Midterm review problems

Do the following problems in Lang:

$$
\begin{aligned}
& \text { p. } 61 \# 21, \text { p. } 61 \# 22, \text { p. } 70 \# 6 \mathrm{f}, \mathrm{p} .77 \# 3, \text { p. } 85 \# 1, \\
& \text { p. } 93 \# 4, \text { p. } 93 \# 5, \text { p. } 109 \# 3, \text { p. } 110 \# 15, \text { p. } 121 \# 1, \\
& \text { p. } 122 \# 3, \text { p. } 134 \# 5, \text { p. } 135 \# 10, \text { p. } 135 \# 12, \text { p. } 135 \# 13, \\
& \text { p. } 136 \# 18, \text { p. } 136 \# 19, \text { p. } 141 \# 8, \text { p } 143 \# 15, \text { p } 144 \# 16, \\
& \text { p. } 149 \# 6, \text { p. } 157 \# 3, \text { p. } 157 \# 4, \text { p. } 163 \# 4, \text { p. } 163 \# 5, \\
& \text { p. } 163 \# 7, \text { p. } 169 \# 11, \text { p. } 170 \# 13 .
\end{aligned}
$$

1. Let $A=\left(\begin{array}{lllll}1 & 2 & 2 & 2 & 2 \\ 1 & 2 & 4 & 4 & 4 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 2\end{array}\right)$
(a) Find a basis for the kernel of the linear map $L_{A}: \mathbb{R}^{5} \rightarrow \mathbb{R}^{4}$.
(b) Find a basis for the image of the linear map $L_{A}: \mathbb{R}^{5} \rightarrow \mathbb{R}^{4}$.
2. Find the inverse of the matrix $A=\left(\begin{array}{ccc}a & a & 0 \\ 0 & b & b \\ 0 & 0 & c\end{array}\right)$, where a, b, c are non-zero numbers.
3. Let W be a subset of the vector space V.
(a) What conditions must W satisfy for it to be a linear subspace of V ?
(b) Let V be the vector space of continuous functions on the closed inverval $[0,1]$ and

$$
W=\{f \in V: f(0)=f(1)=0\} .
$$

Prove that W is a linear subspace of V.
4. Let V be the three-dimensional vector space of polynomials of degree at most 2 . The set $\left\{P_{1}, P_{2}, P_{3}\right\}$, where

$$
P_{1}(x)=1, \quad P_{2}(x)=x, \quad P_{3}(x)=x^{2}
$$

is a basis for V. (You do not have to show this.).
Let $L: V \rightarrow V$ be the linear map given by the formula

$$
L(f)=f^{\prime \prime}+f^{\prime}+f .
$$

Find the matrix associated to L with respect to the above basis.
5. Let $L: V \rightarrow V$ be a linear map and suppose that $L(u)=u$ and $L(v)=2 v$, where u and v are non-zero vectors in V. Prove that $\{u, v\}$ is an independent set.

An old Math 136 midterm

1. Let $A=\left(\begin{array}{lll}1 & 0 & 0 \\ 1 & 1 & 0 \\ 2 & 1 & 1\end{array}\right) \cdot\left(\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1\end{array}\right)$.
(a) Find a basis for the column space of A.
(b) Find a basis for the row space of A.
2. Let $A=\left(\begin{array}{lllll}1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 2 \\ 5 & 5 & 1 & 2 & 8 \\ 3 & 3 & 1 & 1 & 5\end{array}\right)$ and let $L_{A}: \begin{cases}\mathbb{R}^{5} & \rightarrow \mathbb{R}^{4} \\ X & \mapsto A \cdot X \text {. }\end{cases}$
(a) What is the dimension of $\operatorname{Im} L_{A}$ (the image of L_{A})?
(b) What is the dimension of $\operatorname{Ker} L_{A}$ (the kernel of L_{A})?
(c) Find a basis for $\operatorname{Ker} L_{A}$.
(d) Find a basis for $\operatorname{Im} L_{A}$.
(d) Find a basis for the row space of A.
3. Let $A_{1}, A_{2} \in \mathbb{R}^{5}$ be non-zero column vectors satisfying the condition $A_{1}^{t} \cdot A_{2}=0$. Show that the 5×5 matrix

$$
A=A_{1} \cdot A_{1}^{t}+A_{2} \cdot A_{2}^{t}
$$

has rank 2. Hint: There is an obvious basis for the column space of A.
4. Suppose that $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a basis for the vector space V. Suppose further that $L: V \rightarrow V$ is a linear map whose kernel is generated by $\left\{v_{1}, v_{2}, v_{3}\right\}$. Finally, suppose that $L\left(v_{4}\right)=\lambda v_{4}$, for $\lambda \in \mathbb{R}$.
Find the matrix of L with respect to the basis $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$.
5. Let $V=C^{\infty}(\mathbb{R})$ (i.e. the vector space of infinitely differentiable functions), and let $L: V \rightarrow V$ be the map defined by

$$
L: f(x) \mapsto \frac{1}{2}(f(x)+f(-x))
$$

(a) Show that L is a linear map.
(b) Describe the image of L.
(c) Describe the kernel of L.

