1. Suppose that $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a continuous function and let I be an open interval of the form $I=(a, b)$ where $a<b$. Using the definition of continuity, show that the preimage of I, defined by

$$
f^{-1}(I)=\left\{\mathbf{x} \in \mathbb{R}^{n}: f(\mathbf{x}) \in I\right\}
$$

is an open set.
2. Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the function defined by

$$
g(x, y)= \begin{cases}\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}} & \text { for }(x, y) \neq(0,0) \\ 0 & \text { for }(x, y)=(0,0)\end{cases}
$$

Show that

$$
g_{y}(x, 0)=\lim _{h \rightarrow 0} \frac{g(x, h)-g(x, 0)}{h}=x
$$

and similarly that $g_{x}(0, y)=-y$. Hence, show that $g_{y x}(0,0)=1$ and $g_{x y}(0,0)=-1$.
3. Suppose that $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a C^{2}-function (that is, the second partial derivatives of f are all continuous). Define $g: \mathbb{R} \rightarrow \mathbb{R}$ by the formula

$$
g(t)=f(\mathbf{x}+t \mathbf{h})
$$

where \mathbf{x} and \mathbf{h} are vectors in \mathbb{R}^{2}. Use the chain rule to find formulae for both $g^{\prime}(t)$ and $g^{\prime \prime}(t)$.
4. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a C^{2} function. Suppose that $M>0$ is a real number such that $\left|f_{x x}\right| \leq M,\left|f_{x y}\right| \leq M$, and $\left|f_{y y}\right| \leq M$. Use problem (2) above and formula (12.6.3) of Salas-Hille-Etgen (page 605) to show that

$$
|f(\mathbf{x}+\mathbf{h})-f(\mathbf{x})-\nabla f(\mathbf{x}) \cdot \mathbf{h}| \leq M\|\mathbf{h}\|^{2}
$$

