1. Consider the function

$$
f(x, y)=3 x^{2}+2 x y+3 y^{2}=\left(\begin{array}{ll}
x & y
\end{array}\right) \cdot\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right) \cdot\binom{x}{y} .
$$

Consider the new variables (X, Y) where

$$
\binom{X}{Y}=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right) \cdot\binom{x}{y} .
$$

For an appropriate choice of θ, the function f will assume the form $f(x, y)=a X^{2}+b Y^{2}$. Find a, b, and θ by diagonalizing the matrix $\left(\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right)$.

Matrix exponentiation. Suppose that A is an $n \times n$ matrix. Let I be the $n \times n$ identity matrix, and define e^{A} to be

$$
e^{A}=I+A+\frac{1}{2!} A^{2}+\frac{1}{3!} A^{3}+\cdots=\sum_{k=0}^{\infty} \frac{1}{k!} A^{k} .
$$

(For an $n \times n$ matrix A, define A^{0} to be I. Also, it is possible to show that this infinite series always converges.)
2. (a) Prove that if A is diagonal with diagonal entries $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, then e^{A} is diagonal with diagonal entries $e^{\lambda_{1}}, e^{\lambda_{2}}, \ldots, e^{\lambda_{n}}$.
(b) Prove that if B is invertible, then for any positive integer $k, B^{-1} A^{k} B=\left(B^{-1} A B\right)^{k}$.
(c) Use (b) to prove that if B is invertible, then $e^{B^{-1} A B}=B^{-1} e^{A} B$.

By the previous problem, $e^{A}=B e^{B^{-1} A B} B^{-1}$, and if $B^{-1} A B$ is diagonal, it is easy to compute $e^{B^{-1} A B}$. This gives a good way of computing matrix exponentials for diagonalizable matrices.
3. Let $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 0 & 3\end{array}\right)$ and show that $e^{A}=\left(\begin{array}{ccc}e & e^{2}-e & e^{3}-e^{2} \\ 0 & e^{2} & e^{3}-e^{2} \\ 0 & 0 & e^{3}\end{array}\right)$.
4. Let A be a symmetric $n \times n$ matrix. Prove that

$$
\operatorname{det}\left(e^{A}\right)=e^{\operatorname{tr}(A)}
$$

