(1) Three objects of mass m connected by springs are free to move up and down as shown in the figure below.

Let y_{k}, for $k=1,2,3$, denote the height of the k th object above the x-axis. Let F_{k} denote the vertical component of the net force on the k th object. One can show that if all the heights y_{k} are small, then

$$
F_{1}=-2 K y_{1}+K y_{2}, \quad F_{2}=K y_{1}-2 K y_{2}+K y_{3}, \quad F_{3}=K y_{2}-2 K y_{3} .
$$

Let $\omega=\sqrt{K / m}$.
(a) Show that Newton's equations of motion can be written in the matrix form

$$
\frac{d^{2} Y}{d t^{2}}+A Y=O
$$

where

$$
Y=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right) \text { and } A=\omega^{2}\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right)
$$

(b) Find the general solution by diagonalizing the appropriate matrix.
(c) Interpret the eigenvectors you find.
(d) Suppose that at time $t=0, y_{1}=1, y_{2}=0, y_{3}=-1$, and the velocity of every mass is zero. Find $Y(t)$ for all t.
(2) Let A be a real $n \times n$ matrix and consider the linear map $L_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ given by multiplication by A.

Suppose that $\lambda=\alpha+i \beta \in \mathbb{C}, \beta \neq 0$, is a complex eigenvalue of L_{A}, with complex eigenvector $Z=X_{1}+i X_{2}$, where X_{1} and X_{2} are column vectors in \mathbb{R}^{n} (not both zero). Thus,

$$
A Z=\left(A X_{1}\right)+i\left(A X_{2}\right)=\left(\alpha X_{1}-\beta X_{2}\right)+i\left(\alpha X_{2}+\beta X_{1}\right)
$$

(a) Prove that the vectors X_{1} and X_{2} are linearly independent and, therefore, span a 2dimensional subspace $W=\operatorname{span}\left(X_{1}, X_{2}\right) \subset \mathbb{R}^{n}$.
(b) Show that L_{A} restricts to define a linear map $L_{W}: W \rightarrow W$ and that the matrix of L_{W} with respect to the basis $\left(X_{1}, X_{2}\right)$ of W is

$$
|\lambda|\left(\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right)
$$

where $\lambda=|\lambda| e^{i \theta}$ (the polar form of λ).
(c) What is the geometrical interpretation of the result of part (b)?

