(1) Let $U \subset \mathbb{R}^{4}$ be the subspace spanned by the two column vectors

$$
A_{1}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right), A_{2}=\left(\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right)
$$

Let $P: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ denote the linear map given by orthogonal projection onto U. Find the matrix of P with respect to the standard basis for \mathbb{R}^{4}.
(2) Problem $\# 5$ on page 208 of Lang.
(3) Let $P_{1}=\left(x_{1}, y_{1}\right), P_{2}=\left(x_{2}, y_{2}\right)$, and $P_{3}=\left(x_{3}, y_{3}\right)$ be three non-collinear points in \mathbb{R}^{2}. Show that the equation of the circle passing through these points is given by the equation

$$
\left|\begin{array}{cccc}
1 & x & y & x^{2}+y^{2} \\
1 & x_{1} & y_{1} & x_{1}^{2}+y_{1}^{2} \\
1 & x_{2} & y_{2} & x_{2}^{2}+y_{2}^{2} \\
1 & x_{3} & y_{3} & x_{3}^{2}+y_{3}^{2}
\end{array}\right|=0
$$

(4) Let n be odd and let A be an $n \times n$ skew-symmetric matrix.
(a) Prove that $\operatorname{det}(A)=0$.
(b) Prove that the map $L_{A}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is not surjective.

