(1) Let V be the vector space of continuous function on the interval $[0, \pi]$, that vanish at 0 and π ; and let \langle , \rangle be the scalar product defined by

$$\langle f, g \rangle = \int_0^{\pi} f(x)g(x) dx.$$

Let $g_k(x) = \sin(kx)$, for k = 1, 2, 3, ...

- (a) Show that $\{g_k : k = 1, 2, ...\}$ is an orthogonal set.
- (b) Let $W_n \subset V$ be the subspace generated by the set $\{g_k : k = 1, 2, ..., n\}$, and let $f(x) = x(\pi x)$. Let f_n denote the orthogonal projection of f onto W_n . Show that

$$f_{2n+1}(x) = \frac{8}{\pi} \sum_{k=0}^{n} \frac{\sin((2k+1)x)}{(2k+1)^3}.$$

(2) Let \langle , \rangle be an inner product on a vector space V. Let $L:V\to V$ be a linear operator that satisfies the condition

$$\langle u, L(v) \rangle = \langle L(u), v \rangle$$
 for all $u, v, \in V$.

Finally, let v_{λ} and v_{μ} be eigenvectors of L associated to two eigenvalues λ and μ , respectively. Prove that if $\lambda \neq \mu$, then $v_{\lambda} \perp v_{\mu}$.

(3) Let V be the vector space of continuous functions on the closed interval [-1,1], with scalar product defined by

$$\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) dx.$$

- (a) Apply the Gram-Schmidt orthogonalization process to the set $\{1, x, x^2, x^3\}$ to obtain an orthogonal set of four polynomials, $\{p_0(x), p_1(x), p_2(x), p_3(x)\}$.
- (b) Verify that p_k is a solution of the differential equation

$$(1 - x^2)y'' - 2xy' + \lambda y = 0$$
, with $\lambda = k(k+1)$.

Remark: Applying Gram-Schmidt to the set $\{1, x, x^2, x^3, \dots\}$ yields an orthogonal set $\{p_k(x): k=0,1,2,\dots\}$ of polynomials, which after multiplication by constants are called Legendre polynomials. Moreover, $p_k(x)$ is a solution of the Legendre equation

$$(1 - x^2)y'' - 2xy' + \lambda y = 0$$
 with $\lambda = k(k+1)$.