(1) Let V be the vector space of continuous function on the interval $[0, \pi]$, that vanish at 0 and π; and let \langle,$\rangle be the scalar product defined by$

$$
\langle f, g\rangle=\int_{0}^{\pi} f(x) g(x) d x
$$

Let $g_{k}(x)=\sin (k x)$, for $k=1,2,3, \ldots$.
(a) Show that $\left\{g_{k}: k=1,2, \ldots\right\}$ is an orthogonal set.
(b) Let $W_{n} \subset V$ be the subspace generated by the set $\left\{g_{k}: k=1,2, \ldots, n\right\}$, and let $f(x)=$ $x(\pi-x)$. Let f_{n} denote the orthogonal projection of f onto W_{n}. Show that

$$
f_{2 n+1}(x)=\frac{8}{\pi} \sum_{k=0}^{n} \frac{\sin ((2 k+1) x)}{(2 k+1)^{3}} .
$$

(2) Let \langle,$\rangle be an inner product on a vector space V$. Let $L: V \rightarrow V$ be a linear operator that satisfies the condition

$$
\langle u, L(v)\rangle=\langle L(u), v\rangle \text { for all } u, v, \in V
$$

Finally, let v_{λ} and v_{μ} be eigenvectors of L associated to two eigenvalues λ and μ, respectively. Prove that if $\lambda \neq \mu$, then $v_{\lambda} \perp v_{\mu}$.
(3) Let V be the vector space of continuous functions on the closed interval $[-1,1]$, with scalar product defined by

$$
\langle f, g\rangle=\int_{-1}^{1} f(x) g(x) d x
$$

(a) Apply the Gram-Schmidt orthogonalization process to the set $\left\{1, x, x^{2}, x^{3}\right\}$ to obtain an orthogonal set of four polynomials, $\left\{p_{0}(x), p_{1}(x), p_{2}(x), p_{3}(x)\right\}$.
(b) Verify that p_{k} is a solution of the differential equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\lambda y=0, \text { with } \lambda=k(k+1) .
$$

Remark: Applying Gram-Schmidt to the set $\left\{1, x, x^{2}, x^{3}, \ldots\right\}$ yields an orthogonal set $\left\{p_{k}(x): k=0,1,2, \ldots\right\}$ of polynomials, which after multiplication by constants are called Legendre polynomials. Moreover, $p_{k}(x)$ is a solution of the Legendre equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+\lambda y=0 \text { with } \lambda=k(k+1)
$$

