Math 136: Homework 4
Due Thursday, April 21
(1) Let V be the vector space of 2×2 matrices, let $A=\left(\begin{array}{cc}1 & 1 \\ -1 & -1\end{array}\right)$, and define a linear map L by

$$
\begin{aligned}
L: V & \rightarrow V \\
B & \mapsto B A .
\end{aligned}
$$

Find a basis for the kernel of L.
(2) Consider the linear map $L_{A}: \mathbf{R}^{3} \rightarrow \mathbf{R}^{3}$, where $A=\left(\begin{array}{ccc}1 & -2 & 0 \\ 1 & 4 & 0 \\ -2 & -2 & 1\end{array}\right)$. Find the matrix associated to L_{A} with respect to the basis

$$
\left\{v_{1}, v_{2}, v_{3}\right\}=\left\{\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{c}
2 \\
-1 \\
-2
\end{array}\right),\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)\right\}
$$

(3) The following exercises show that the set \mathbf{C} of complex numbers can be represented as a set of 2×2 matrices of a certain form.
(a) Show that the complex numbers \mathbf{C} under addition and multiplication by real numbers can be viewed as a 2 -dimensional vector space.
(b) Let $M(2)$ denote the space of 2×2 matrices, and let $L: \mathbf{C} \rightarrow M(2)$ be the map defined by $L(x+i y)=\left(\begin{array}{cc}x & y \\ -y & x\end{array}\right)$. Verify that L is a linear map. (That is, $L\left(z_{1}+z_{2}\right)=L\left(z_{1}\right)+L\left(z_{2}\right)$ and $L(c z)=c L(z)$, for all $z_{1}, z_{2}, z \in \mathbf{C}$ and $c \in \mathbf{R}$.
(c) Show that L satisfies the identity $L\left(z_{1} z_{2}\right)=L\left(z_{1}\right) L\left(z_{2}\right)$ for all $z_{1}, z_{2} \in$ C.
(d) What is the rank of L ? What does this tell you about the kernel and image of L ?
(4) Let $L: \mathbf{R}^{3} \rightarrow M(3)$ be the linear map defined by $L((x, y, z))=\left(\begin{array}{ccc}0 & z & y \\ -z & 0 & x \\ -y & -x & 0\end{array}\right)$.

Observe that the image of L is the space $A(3)$ of 3×3, skew-symmetric matrices. Show that

$$
L(\mathbf{u} \times \mathbf{v})=[L(\mathbf{u}), L(\mathbf{v})]
$$

where $[A, B]$ denotes the Lie bracket of A and B, i.e., $[A, B]=A B-B A$.

