Math 136: Homework 1

Due Thursday, March 31
(1) Let $A_{1}, A_{2}, \ldots, A_{r}$ be non-zero vectors in \mathbf{R}^{n} which are mutually perpendicular (i.e. $A_{i} \cdot A_{j}=0$ for $i \neq j$). Let $c_{1}, c_{2}, \ldots, c_{r}$ be numbers such that

$$
c_{1} A_{1}+c_{2} A_{2}+\cdots+c_{r} A_{r}=O .
$$

Show that $c_{i}=0$ for all i.
(2) Let X and Y be vectors in $\mathbf{R}^{n}, Y \neq O$. Prove that $\|X+Y\|=\|X\|+\|Y\|$ if and only if $X=\lambda Y$ for $\lambda \geq 0$.
(3) Let X and Y be vectors in \mathbf{R}^{n}. Prove the identity

$$
\|X+Y\|^{2}-\|X-Y\|^{2}=4 X \cdot Y
$$

