Math 136: Homework 1 Due Thursday, March 31

(1) Let A_1, A_2, \ldots, A_r be non-zero vectors in \mathbb{R}^n which are mutually perpendicular (i.e. $A_i \cdot A_j = 0$ for $i \neq j$). Let c_1, c_2, \ldots, c_r be numbers such that

$$c_1A_1 + c_2A_2 + \dots + c_rA_r = O.$$

Show that $c_i = 0$ for all i.

- (2) Let X and Y be vectors in \mathbb{R}^n , $Y \neq O$. Prove that ||X + Y|| = ||X|| + ||Y|| if and only if $X = \lambda Y$ for $\lambda \geq 0$.
- (3) Let X and Y be vectors in \mathbb{R}^n . Prove the identity

$$||X + Y||^{2} - ||X - Y||^{2} = 4X \cdot Y.$$