Midterm 2 review

Topics:

- separable equations, autonomous equations
- linear first order equations and their integrating factors
- Picard iteration
- \bullet linear degree n equations, linear independence, form of the general solution in both the homogeneous and non-homogeneous cases
- solving linear constant coefficient homogeneous equations using the characteristic equation
- finding a second solution to a linear homogeneous equation using reduction of order
- solving linear constant coefficient nonhomogeneous equations using the method of undetermined coefficients and using variation of parameters
- Laplace transforms and inverse Laplace transforms: basic formulas, using tables, discontinuous forcing functions, the Dirac δ -function (NOT COVERED in 2011: convolutions)
- solving linear constant coefficient equations using Laplace transforms
- (NOT COVERED in 2011) power series solutions, method of Frobenius

Two old Math 135 midterms

- (A1) Find the general solution of the differential equation $y'' + y = 2t^2 + t$.
- (A2) Find a particular solution of the differential equation $y'' y = (1 + t^2)^{-1}$. Express your answer in terms of integrals, and do not attempt to evaluate these integrals.
- (A3) Is there a differential equation of the form y'' + p(t)y' + q(t)y = 0, with p and q continuous on the open interval -1 < t < 1, for which the functions $y = t^4$ and $y = t^6$ are both solutions? Explain your answer.
- (A4) The solution of the initial value problem

$$y'' + (t+1)y' + y = 0$$
, $y(0) = 1$ $y'(0) = 0$

can be expressed in the form $y = \sum_{k=0}^{\infty} a_k t^k$. Find the recursion formula for the coefficients.

- (A5) (a) Find $\mathcal{L}^{-1}\left[\frac{1}{(s-1)^2}\right]$.
 - (b) Use the result of part (a) to find $\mathcal{L}^{-1}\left[\frac{e^{-3s}}{(s-1)^2}\right]$.
 - (c) Use the results of parts (a) and (b) to solve the initial value problem

$$y'' - 2y' + y = \delta(t - 3)$$
, $y(0) = 0$, $y'(0) = 1$.

(A6) By computing Laplace transforms, show that the solution of the initial value problem

$$y'' - y = f(t), \quad y(0) = y'(0) = 0$$

can be written as a convolution of f with another function. What is that other function?

(B1) Let c be a constant, and let y(t) be the solution to the initial value problem

$$y'' - 4y = \delta(t - 1) + c\delta(t - 3), \quad y(0) = 0, \ y'(0) = 0.$$

For what value(s) of c does y(t) satisfy $\lim_{t\to\infty} y(t) = 0$?

(B2) The solution to the initial value problem

$$(1+x^2)y'' + y' - 2y = 0$$
, $y(0) = 1$, $y'(0) = 2$,

can be expressed in the form $y = \sum_{n=0}^{\infty} a_n x^n$. Find the recursion formula for the coefficients. Also find a_0, a_1, a_2 and a_3 .

(B3) Find the general solution to the equation

$$y'' + 2y' + 2y = 2\cos t.$$

(B4) Consider the equation

$$y'' - 4y' + 4y = f(t).$$

- (a) What is y_c , the general solution to the associated homogeneous equation?
- (b) Let $f(t) = (t^2 7)\cos 2t$. According to the method of undetermined coefficients, what should you try for y_p ? (Don't solve for the coefficients: just give me the form for y_p .)
- (c) Let $f(t) = te^{2t}$. According to the method of undetermined coefficients, what should you try for y_p ? (Don't solve for the coefficients: just give me the form for y_p .)
- (B5) Let f(t) be a continuous function, and suppose that $y_1(t)$ and $y_2(t)$ are solutions to the equation

$$y'' + 4y = f(t)$$

satisfying the initial conditions

$$y_1(0) = 2$$
, $y_1'(0) = 2$, $y_2(0) = 2$, $y_2'(0) = 0$.

Find $y_1(t) - y_2(t)$.

(B6) Find the general solution to the equation

$$x^2y' + xy = 3x^3.$$