Midterm 2 review

Topics:

- separable equations, autonomous equations
- linear first order equations and their integrating factors
- Picard iteration
- linear degree n equations, linear independence, form of the general solution in both the homogeneous and non-homogeneous cases
- solving linear constant coefficient homogeneous equations using the characteristic equation
- finding a second solution to a linear homogeneous equation using reduction of order
- solving linear constant coefficient nonhomogeneous equations using the method of undetermined coefficients and using variation of parameters
- Laplace transforms and inverse Laplace transforms: basic formulas, using tables, discontinuous forcing functions, the Dirac δ-function (NOT COVERED in 2011: convolutions)
- solving linear constant coefficient equations using Laplace transforms
- (NOT COVERED in 2011) power series solutions, method of Frobenius

Two old Math 135 midterms

(A1) Find the general solution of the differential equation $y^{\prime \prime}+y=2 t^{2}+t$.
(A2) Find a particular solution of the differential equation $y^{\prime \prime}-y=\left(1+t^{2}\right)^{-1}$. Express your answer in terms of integrals, and do not attempt to evaluate these integrals.
(A3) Is there a differential equation of the form $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$, with p and q continuous on the open interval $-1<t<1$, for which the functions $y=t^{4}$ and $y=t^{6}$ are both solutions? Explain your answer.
(A4) The solution of the initial value problem

$$
y^{\prime \prime}+(t+1) y^{\prime}+y=0, \quad y(0)=1 \quad y^{\prime}(0)=0
$$

can be expressed in the form $y=\sum_{k=0}^{\infty} a_{k} t^{k}$. Find the recursion formula for the coefficients.
(A5) (a) Find $\mathcal{L}^{-1}\left[\frac{1}{(s-1)^{2}}\right]$.
(b) Use the result of part (a) to find $\mathcal{L}^{-1}\left[\frac{e^{-3 s}}{(s-1)^{2}}\right]$.
(c) Use the results of parts (a) and (b) to solve the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}+y=\delta(t-3), \quad y(0)=0, \quad y^{\prime}(0)=1
$$

(A6) By computing Laplace transforms, show that the solution of the initial value problem

$$
y^{\prime \prime}-y=f(t), \quad y(0)=y^{\prime}(0)=0
$$

can be written as a convolution of f with another function. What is that other function?
(B1) Let c be a constant, and let $y(t)$ be the solution to the initial value problem

$$
y^{\prime \prime}-4 y=\delta(t-1)+c \delta(t-3), \quad y(0)=0, y^{\prime}(0)=0
$$

For what value(s) of c does $y(t)$ satisfy $\lim _{t \rightarrow \infty} y(t)=0$?
(B2) The solution to the initial value problem

$$
\left(1+x^{2}\right) y^{\prime \prime}+y^{\prime}-2 y=0, \quad y(0)=1, y^{\prime}(0)=2
$$

can be expressed in the form $y=\sum_{n=0}^{\infty} a_{n} x^{n}$. Find the recursion formula for the coefficients. Also find a_{0}, a_{1}, a_{2} and a_{3}.
(B3) Find the general solution to the equation

$$
y^{\prime \prime}+2 y^{\prime}+2 y=2 \cos t
$$

(B4) Consider the equation

$$
y^{\prime \prime}-4 y^{\prime}+4 y=f(t)
$$

(a) What is y_{c}, the general solution to the associated homogeneous equation?
(b) Let $f(t)=\left(t^{2}-7\right) \cos 2 t$. According to the method of undetermined coefficients, what should you try for y_{p} ? (Don't solve for the coefficients: just give me the form for y_{p}.)
(c) Let $f(t)=t e^{2 t}$. According to the method of undetermined coefficients, what should you try for y_{p} ? (Don't solve for the coefficients: just give me the form for y_{p}.)
(B5) Let $f(t)$ be a continuous function, and suppose that $y_{1}(t)$ and $y_{2}(t)$ are solutions to the equation

$$
y^{\prime \prime}+4 y=f(t)
$$

satisfying the initial conditions

$$
y_{1}(0)=2, \quad y_{1}^{\prime}(0)=2, \quad y_{2}(0)=2, y_{2}^{\prime}(0)=0
$$

Find $y_{1}(t)-y_{2}(t)$.
(B6) Find the general solution to the equation

$$
x^{2} y^{\prime}+x y=3 x^{3} .
$$

