Four old Math 135 midterms

- (A1) Evaluate $\lim_{x\to 0} \frac{x\sin(x^2) \sin(x^3)}{\sin(x^7)}$ in any way you wish.
- (A2) Evaluate the integral $\int_{-1}^{1} \frac{x}{\sqrt{1-x^2}} dx$ or explain why you can't.
- (A3) Consider the power series $\sum_{k=1}^{\infty} \frac{2^k \ln(k+1)}{k} x^k$.
 - (a) Find its radius of convergence.
 - (b) Find its interval of convergence.
 - (c) For what values of x the series absolutely convergent? For what values of x is the series conditionally convergent?
- (A4) Consider the sequence $\{a_k\}$ defined by $a_0 = 0$, $a_{n+1} = 1 + m a_n$, where m is a real number with |m| < 1. Does the sequence converge? Explain your answer. If the sequence does converge, what is its limit?
- (A5) Find the first three non-zero terms in the series expansion of $\arcsin(x)$ about x = 0. **Hint:** Recall that $\arcsin(x) = \int_0^x (1-t^2)^{-1/2} dt$. If you wish, you may use the binomial expansion of $(1+x)^{-1/2}$.
- (B1) Evaluate $\lim_{x\to 0} \frac{\cosh x \cos x}{\sin x^2}$ in any way you wish.
- (B2) Is the series $\sum_{k=1}^{\infty} (-1)^k \frac{\ln k}{k^3 + \ln k + 1}$ absolutely convergent, conditionally convergent, or divergent? Justify your answer
- (B3) Evaluate the integral $\int_{-1}^{1} \frac{2x}{1-x^2} dx$ or explain why you can't.
- (B4) Give the Taylor series about 0 of the function $f(x) = \int_0^x \sin(t^2) dt$. For what values of x does the series converge to f(x)? Justify your answer.
- (B5) Consider the sequence $\{a_k\}$ defined by $a_0 = 0$,

$$a_0 = 1$$
, $a_{n+1} = 1 - a_n/2$ for $n = 0, 1, 2, \dots$

Show that the sequence converges to 2/3.

- (C1) Evaluate the limit $\lim_{x\to 0} \frac{\cosh x \cos x}{x^2}$.
- (C2) Evaluate the integral $\int_{-\infty}^{\infty} \frac{x}{1+x^2} dx$ or explain why you can't.
- (C3) Does the series $1 + \frac{1 \cdot 2}{1 \cdot 3} + \frac{1 \cdot 2 \cdot 3}{1 \cdot 3 \cdot 5} + \frac{1 \cdot 2 \cdot 3 \cdot 4}{1 \cdot 3 \cdot 5 \cdot 7} + \dots$ converge?
- (C4) Test the following two series for (i) absolute and (ii) conditional convergence.

(a)
$$\sum_{n=1}^{\infty} (-1)^k \frac{k+2}{k^2+k}$$

$$(b)\sum_{n=1}^{\infty} \frac{k^k}{k!}$$

- (C5) Let S be the set of numbers of the form $(-1)^{n^2} \frac{n+1/n!}{n+1}$ for $n \ge 2$. Explain why S does or does not have a least upper bound. If it has a least upper bound, what is it? Answer the same question about greatest lower bounds.
- (D1) Evaluate $\lim_{x\to 0} \frac{\cos x \cos 2x}{x \sin 4x}$.
- (D2) Evaluate the integral $\int_0^1 \frac{dx}{x^{2/5}}$ or explain why you can't.
- (D3) Use the formula $\frac{d}{dx}(\tanh^{-1}x) = \frac{1}{1-x^2}$, valid for -1 < x < 1, to compute the Taylor series for $\tanh^{-1}x$. What is the interval of convergence for the series?
- (D4) For each integer $n \ge 1$, let $a_n = 2\ln(3n-1) \ln(2n^2 + 2n + 3)$. Does the sequence $\{a_n\}$ converge or diverge? If it converges, what is the limit?
- (D5) (a) Does the series $\sum_{k=1}^{\infty} \frac{k!}{k^k}$ converge or diverge?
 - (b) Does the series $\sum_{k=1}^{\infty} (-1)^k \frac{k+2}{k^3+k}$ converge absolutely, converge conditionally, or diverge?