Math 135: Homework 9 Due Thursday, March 3

(1) Show that for any vectors **a** and **b**,

$$|\|\mathbf{a}\| - \|\mathbf{b}\|| \le \|\mathbf{a} - \mathbf{b}\|$$

(Hint: a = (a - b) + b.)

(2) Let T denote the tetrahedron centered at the origin O with vertices at the points $P_1(1,1,1)$, $P_2(-1,-1,1)$, $P_3(1,-1,-1)$, and $P_4(-1,1,-1)$. Using vector methods, find the cosines of the angles $\angle P_i OP_j$ for all $i \neq j$. What are the approximate angles (in degrees)?

(3)

- (a) Suppose that $\mathbf{a} \cdot \mathbf{b} = 0$ and $\mathbf{a} \times \mathbf{b} = \mathbf{0}$. Show that either $\mathbf{a} = \mathbf{0}$ or $\mathbf{b} = \mathbf{0}$.
- (b) Now suppose that $\mathbf{a} \neq \mathbf{0}$. If \mathbf{c} and \mathbf{d} are vectors for which

 $\mathbf{a} \cdot \mathbf{c} = \mathbf{a} \cdot \mathbf{d}$ and $\mathbf{a} \times \mathbf{c} = \mathbf{a} \times \mathbf{d}$,

use the result of (a) to prove that $\mathbf{c} = \mathbf{d}$.