Math 135: Homework 8

Do not turn in. Do before the midterm on February 25
(1) Recall that the Laplace transform of the function $u(t-c) f(t-c), c \geq 0$ is $e^{-c s} F(s)$, where F is the Laplace transform of f. Use this fact to compute the inverse Laplace transform of $\frac{1-e^{-2 s}}{s^{2}+1}$.
(2) Let m and k be positive constants, and consider the differential equation

$$
m y^{\prime \prime}+k y=f(t)
$$

Suppose that $y(0)=y^{\prime}(0)=0$, and let $f(t)$ be given by

$$
f(t)= \begin{cases}0 & \text { for } t<t_{0} \\ F_{0} & \text { for } t_{0} \leq t \leq t_{0}+\Delta t \\ 0 & \text { for } t>t_{0}+\Delta t\end{cases}
$$

for some constants $t_{0}, \Delta t>0$. Use Laplace transform techniques to find $y(t)$.
(3) Let $T>0$ be a fixed constant, and let f be a piecewise continuous function satisfying the condition $f(t+T)=f(t)$ for all $t \geq 0$. Such a function is said to be periodic with period T. Show that in this case,

$$
\mathcal{L}[f](s)=\frac{1}{1-e^{-s T}} \int_{0}^{T} e^{-s t} f(t) d t
$$

(4) Use (3) to compute the Laplace transform of the sawtooth wave

$$
f(t)= \begin{cases}t & \text { for } 0 \leq t<1 \\ f(t-1) & \text { for } t \geq 1\end{cases}
$$

