Math 135: Homework 10
Due Thursday, March 10
(1) A vector-valued function \mathbf{G} is called an antiderivative for \mathbf{f} on $[a, b]$ provide that \mathbf{G} is continuous on $[a, b]$ and $\mathbf{G}^{\prime}(t)=\mathbf{f}(t)$ for all $t \in(a, b)$.
(a) Show that if \mathbf{f} is continuous on $[a, b]$ and \mathbf{G} is an antiderivative for \mathbf{f} on $[a, b]$ then

$$
\int_{a}^{b} \mathbf{f}(t) d t=\mathbf{G}(b)-\mathbf{G}(a)
$$

(b) Show that if \mathbf{f} is continous on $[a, b]$ and \mathbf{F} and \mathbf{G} are antiderivatives for \mathbf{f} on $[a, b]$ then

$$
\mathbf{F}=\mathbf{G}+\mathbf{C}
$$

for some constant vector \mathbf{C}.
(2) Three objects move in space according to the equations

$$
\mathbf{r}=\mathbf{r}_{1}(t) \quad \mathbf{r}=\mathbf{r}_{2}(t) \quad \text { and } \mathbf{r}=\mathbf{r}_{3}(t),
$$

where t denotes time. Let $A(t)$ denote the area of the triangle formed by the three objects. Suppose that

$$
\begin{array}{lll}
\mathbf{r}_{1}(0)=\mathbf{i}+\mathbf{j}+\mathbf{k} & \mathbf{r}_{2}(0)=\mathbf{i}+\mathbf{j}-\mathbf{k} & \mathbf{r}_{3}(0)=\mathbf{k} \\
\mathbf{r}_{1}^{\prime}(0)=\mathbf{i} & \mathbf{r}_{2}^{\prime}(0)=\mathbf{j} & \mathbf{r}_{3}^{\prime}(0)=\mathbf{k}
\end{array}
$$

Compute $A^{\prime}(0)$.

