Sequences are often defined by recursion. For example, suppose that $f: \mathbb{R} \to \mathbb{R}$ is a function and x_0 is a real number. Then we may define a sequence $\{x_n\}$ iteratively

$$x_1 = f(x_0), \ x_2 = f(x_1),$$

and in general by the formula

$$x_{n+1} = f(x_n)$$
 for $n = 0, 1, 2, \dots$

The purpose of this handout is to study this sequence, for a certain family of functions.

We begin with some definitions. Throughout this handout, $\Omega \subset \mathbb{R}$ denotes a set of one of the forms [a,b] for a < b, $[a,\infty)$, $(-\infty,b]$, or \mathbb{R} ; and f denotes a function of the form

$$f:\Omega\to\Omega$$

(i.e. Ω is the domain of f and the range of f is contained in Ω).

Definition 1. The function f is said to be a contraction map if there is a real number K with 0 < K < 1 for which

$$|f(x) - f(y)| \le K|x - y|$$
 for all $x, y \in \Omega$.

For example, if f(x) is differentiable and if there is a real number K with 0 < K < 1 so that $|f'(x)| \le K$ for all x in the interior of Ω , then f is a contraction. (Prove this!)

Lemma 2. If f is a contraction map then f is continuous on Ω .

Proof. Exercise.
$$\Box$$

Definition 3. A point $x_0 \in \Omega$ is called a *fixed point* of f if $f(x_0) = x_0$.

Lemma 4. A contraction map has at most one fixed point.

Proof. Exercise
$$\Box$$

Theorem 5. Let $f: \Omega \to \Omega$ be a contraction map and let $x_0 \in \Omega$. Then the sequence $\{x_n\}$ defined inductively by $x_{n+1} = f(x_n)$, for $n \ge 0$, is a Cauchy sequence. Moreover, the limit $x_\infty = \lim_{n \to \infty} x_n$ is a fixed point of f.

Corollary 6. Let $f: \Omega \to \Omega$ be a contraction map. Then f has exactly one fixed point.

We will prove the theorem through a series of lemmas.

Lemma 7. Suppose $x_n \to x_\infty$. Then x_∞ is a fixed point.

Proof. First note since Ω is either a closed interval or all of \mathbb{R} , then $x_{\infty} \in \Omega$. Hence $f(x_{\infty})$ is defined. (Why?)

To see that $f(x_{\infty}) = x_{\infty}$, choose any $\epsilon > 0$. Then there is an integer N > 0 such that $|x_n - x_{\infty}| < \epsilon$ for all $n \ge N$. Choose any $n \ge N$, and use the triangle inequality to estimate as follows:

$$|f(x_{\infty}) - x_{\infty}| = |f(x_{\infty}) - f(x_n) + f(x_n) - x_{\infty}| \le |f(x_{\infty}) - f(x_n)| + |f(x_n) - x_{\infty}|$$

$$\le K|x_{\infty} - x_n| + |x_{n+1} - x_{\infty}| < 2\epsilon.$$

Since ϵ was arbitrary, it follows that $f(x_{\infty}) = x_{\infty}$.

Lemma 8. The sequence $\{x_n\}$ is bounded. In particular, there is a real number R so that $|x_n-x_0| \le R$ for all $n \ge 0$.

Proof. Let $A = |x_1 - x_0|$. Observe that for any n > 1,

$$|x_n - x_{n-1}| = |f(x_{n-1}) - f(x_{n-2})| \le K|x_{n-1} - x_{n-2}|.$$

Repeating this step n times yields the inequality

$$|x_n - x_{n-1}| \le AK^{n-1}$$
,

valid for all $n \geq 1$. Thus,

$$|x_n - x_0| = |x_n - x_{n-1} + x_{n-1} - x_{n-2} + x_{n-2} + \dots + (x_1 - x_0)|$$

$$\leq |x_n - x_{n-1}| + |x_{n-1} - x_{n-2}| + \dots + |x_1 - x_0|$$

$$\leq (K^{n-1} + K^{n-2} + \dots + K + 1)A \leq \frac{A}{1 - K}.$$

Let R = A/(1-K); then $|x_n - x_0| \le R$ for all n.

Lemma 9. The sequence $\{x_n\}$ is Cauchy.

Proof. Choose any $\epsilon > 0$. Since 0 < K < 1, there is an integer N > 0 for which

$$2RK^N < \epsilon$$
.

where R is as in the previous lemma.

We claim that $|x_n - x_m| < \epsilon$ for all $n, m \ge N$. To see this, note first that by definition of R,

$$|x_{n-N} - x_0| \le R$$
 and $|x_{m-N} - x_0| \le R$.

Hence, by the triangle inequality, $|x_{n-N} - x_{m-N}| \leq 2R$. Now observe that

$$x_n = (\underbrace{f \circ f \circ \cdots \circ f}_{N})(x_{n-N})$$
 and $x_m = (\underbrace{f \circ f \circ \cdots \circ f}_{N})(x_{m-N})$.

Therefore

$$|x_m - x_n| \le K^N |x_{m-N} - x_{n-N}| \le 2RK^N < \epsilon,$$

which is what we needed to prove.

Example 10. Fix a number c > 1 and suppose that $\{x_n\}$ is a sequence defined inductively by $x_1 = 1$, $x_{n+1} = \sqrt{c + x_n}$. Then I claim that $\lim_{n \to \infty} x_n = \frac{1 + \sqrt{1 + 4c}}{2}$.

Consider the function $f:[0,\infty)\to[0,\infty)$ defined by $f(x)=\sqrt{c+x}$. Then $f'(x)=\frac{1}{2\sqrt{c+x}}$. Since c>1, for all x>0 we have |f'(x)|<1/2. Therefore f is a contraction, so it has a unique fixed point. By Theorem 5, the sequence $\{x_n\}$ converges to the fixed point. Furthermore, the fixed point is the number x_∞ so that $f(x_\infty)=x_\infty$:

$$\sqrt{c+x_{\infty}} = x_{\infty}.$$

Solving for x_{∞} yields $x_{\infty} = \frac{1+\sqrt{1+4c}}{2}$.