Math 135A, Winter 2011 Discontinuous forcing functions

1 Preliminaries

If f(t) is defined on the interval [0, 00), then its Laplace transform is defined to be

F(s) = £(f(t)) = / T et (t) dr,

0

as long as this integral is defined and converges. In particular, if f is of exponential order and is
piecewise continuous, the Laplace transform of f(t) will be defined.

e f is of exponential order if there are constants M and c so that

[f(t)] < Me™.

[ee]
Since the integral e St Mec dt converges if s > ¢, then by a comparison test (like (11.7.2)

0
in Salas-Hille-Etgen), the integral defining the Laplace transform of f(¢) will converge.

e fis piecewise continuous if over each interval [0, b], f(¢) has only finitely many discontinuities,
and at each point a in [0, b], both of the limits

lim f(t) and lim f(¢)

t—a~ t—a™t

exist — they need not be equal, but they must exist. (At the endpoints 0 and b, the appropriate
one-sided limits must exist.)

2 Step functions

Define u(t) to be the function

if ¢
ult) = {0 if t <0,

1 ift>0.

Then u(t) is called the step function, or sometimes the Heaviside step function: it jumps from 0 to
1 at t = 0. Note that for any number a > 0, the graph of the function u(t — a) is the same as the
graph of u(t), but translated right by a: u(t — a) jumps from 0 to 1 at ¢t = a.

1 u(t) 1 T
-1 1 2 3 -1 1 2 3
14 ~1
Example 1. We can use the step function to write formulas for functions which are defined
piecewise: if g(t) is defined as
L(t) ift<a,
g(t) = { ©

R(t) ift > a,

u(t — 2)
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then
g(t) = L(t) + [R(t) — L()] u(t — a).

Why? If ¢ < a, then the step function u(t — a) is zero, so this turns into L(¢). If ¢ > a, then
the step function equals 1, so the L(t) terms cancel and we are left with R(¢). We can get similar
expressions for functions defined in three or more separate pieces.

Example 2. Express the function

t ift <1,
gty =<t? if1<t<3,
3 ift>3

using the step function.

We will work from left to right on the real line. When t < 1, the expression t is correct, but it’s
not right for ¢t > 1. Between 1 and 3, we have to subtract ¢ and add t>. We can do this by adding
an appropriate function multiplied by w(¢ — 1), and in particular, this expression is correct when
t<3:
tu(t—1)[t* —t].
Finally, when ¢ > 3, we need to subtract ¢ and add 3, so we get this formula for g():
gt) =t+ut—1)[* —t] +u(t—3) [t —¢*].

Proposition 3. The Laplace transform of u(t — a) is e=*/s. If f(t) is a function with Laplace
transform F(s), then

L(u(t—a)f(t—a)) =e **F(s).
Proof. The integral defining the Laplace transform is
£t —a)f(t—a)) = / e=tu(t — a)f(t — a) di = / e f(t — a) dt.
0 a

(The second equality is by the definition of the step function.) Now make a change of variables:
let w=1t—a. When t = a, w =0, and when ¢t = oo, w = 00, so the integral becomes

| e fwyaw = [ e ey do = e [T e flw)dw = e L (£(0).
0 0 0

2!
2 -3
Example 4. £ (u(t —3)(t —3)°) =¢ 38—3.
By the way, since the Laplace transform is defined in terms of an integral, the behavior at the
discontinuities of piecewise-defined functions is not important. For example, the following functions

will have the same Laplace transform:

0 ift<l, 0 ift<l,
Mﬂz{ Mﬂz{

toift>1, tift>1.
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Exercises 5. (a) Suppose f(t) is some function. In terms of the graph of f(t), what does the
function u(t — a) f(t — a) look like?

(b) Compute L (u(t — 2)).
(c) Compute L (u(t — 2)sin(t — 2)).
Example 6. What is the Laplace transform of the function g(¢) defined by
0 when t < 1,
9(t) =
t—1 whent>17

To answer this, we need to write g(¢) in terms of the step function, but that’s easy here: g(t) =
u(t —1)(t — 1). So in the notation of Proposition 3, we could write this as g(t) = u(t — 1) f(t — 1),
where f(t) =t. So by the proposition,

L(g(t) = e L(t) = e~

2
s
Example 7. Suppose that g(t) is the function defined by
t ift <1,
gt)=<¢t? if1<t<3,
3 ift>3

What is £ (g(t))?
In Example 2 we found an expression for g(¢) in terms of step functions:
g(t) =t +u(t— 1) —t) +u(t — 3)(t> — 2).

Unfortunately, this isn’t in the right form to apply the proposition, because the terms don’t look like
u(t —a) f(t — a) for some function f. Let’s look at the summands: the first summand is just ¢, and
we can compute its Laplace transform: it’s just 1/s?. The second summand is u(t — 1)(t> —t), and
so we need to write t2 —t as a function of ¢t — 1: we want a function f so that f(t—1) = t> —¢t. If we
make the substitution x = ¢t — 1, then ¢ = x+ 1, and this becomes f(r) = (z+1)?—(z+1) = 2%+ .
This is our formula for f: f(x) = 22 + 2, and so f(t) =t +t.

Similarly, the third summand is u(t —3)(t> —t2), and so we want to write ¢3 —t2 as fo(t —3) for some
function fo. We want fo(t — 3) = 3 — 2, so letting # = t — 3, we get fo(z) = (z+3)3 — (v +3)? =
z® + 8z% + 21z + 18.

Now we can compute the Laplace transform of g(t):
L(g(t)) =L(>E+ult =1)f(t=1) +ult =3)fa(t = 3))
= L)+ L(u(t =) f(t = 1)) + L (u(t = 3) f2(t = 3))

= iz + e L(f() + e L (fa(t)

= % + e L (2 +t) + e 3L (3 + 8¢ + 21t + 18)
S

L2 1 e (B 802 21 a8
2T s3 52 € st 53 52 s/
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Example 8. Suppose that g(t) is defined by

t when 0 <t <2,
0 whent > 2.

Solve the initial value problem
y' +4y =g(t), y(0)=0, y'(0) =0.
2 4

1 +

I would like to use Laplace transforms, and to compute the Laplace transform of g(¢), I need to
write g(t) using step functions. When computing the Laplace transform of a function ¢(t), what
happens when ¢ < 0 is irrelevant — the integral starts at ¢ = 0 — so I can write g(¢) like this:

gt) =t+u(t —2)(—t) =t +u(t —2)(—(t —2) —2).
So if f(t) = —t — 2, then g(t) =t + u(t — 2)f(t — 2). Now we're ready to go: let Y = L (y), and

then because of the initial conditions, £ (y') = sY and L (y") = s?Y. When I apply the Laplace
transform to the differential equation, I get

(32+4)Y:£(t+u(t—2)f(t—2))28—12—1—6_25 <—i_3>.

52 s
Therefore
1 1
Y = (1— —2s —9 —2s
(1—e )32(32 +4) ‘ s(s?2+4)
_ 1/4  —1/4 _ 1/4  —s/4
—(1— 2s o= —9 2s [ 2/ F
(1-e )<s2+32+4> ‘ <s A
1/4 —1/4 1/4 1/4 1/2 5/2
(M S (2 ey
s s +4 s s +4 s s +4
Therefore

Y= (%Jr —1/4> o <e_28 <—1/4+ /412, s)2 >>

s2 0 s244 2 s2+4 S s24+4

1 1
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where
_ 1/4 1/4 1/2 s/2
=Lt -2 e —
J®) ( 32+s2+4 s +s2+4
= 1t—|— L 2t L + L 2t
=1 8s1n 5 2005 .
So

1 1 1 1 1 1
t)=-t——-sin2t+u(t—2)| —-(F—2)+-sin2(t -2) — -+ = 2(t —2
y(t) 4t 8sm t + u( )( 4(t ) 8Sm ( ) 5 2cos (t ))

L Lot ru—2) (Lt 4 Leimaw—2) + Leos20t - 2)
—4 SSID u 4 8Sln 2COS .

We can also write this as a piecewise-defined function:

1 1 . .
y(t):{zt—gsm% if t <2,

—%sin2t + $sin2(t — 2) 4+ Fcos2(t —2) ift >2.

You can check that this function is continuous and twice differentiable for all ¢ > 0. (The only
interesting point is ¢ = 2.) Here’s a graph:

AN
1 i/ s

Example 9. Suppose that g(t) is defined by

(1) = 100sin 40t when 0 <t < 7,
9= 0 when ¢t > 7.

Solve the initial value problem
y'+3y +2y=g(t), y(0)=0,y'(0)=0.

I’'m going to skip the details and just reproduce the solution and its graph; we’ll discuss some
interpretations of this example in class:

[ —2.49e72 + 2.50e7t — 0.0622in(40t) — 0.00467 cos(40t), if 0 <t <7,
] —2.25e2(=7) 4 228 (t=T) ift>7.
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Exercises 10. Solve the initial value problems

y'+y=f(t), y0)=0,y(0)=0,

14 14+  —

(a) = : : : (b) = : : :

~1 1 2 3 ~1 1 2 3
—14 14
1+ / 1+

(c) = . : : (d) = : . :

~1 1 2 3 -1 1 2 3
14 14

3 The Dirac )-function

Proposition 11. (a) Let € be a positive number and consider the function f.(t) defined by

£t = {1/6 if0<t<e,

0 ift > e

Then . s
—e

LSt = —.

(b) “Define” the Dirac delta function 6(t) to be

5(t) = Lim f.(t).

e—0t
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Then 6(t) = 0 except when t = 0, and it has the following properties with respect to integration:
for any function f(t),

/_OO S(t)dt =1, /_OO S(t)f(t) dt = £(0).

Therefore for any positive number a, we have L (6(t —a)) = e~ 5.

The Dirac delta function models an instantaneous force applied to a system, like hitting a mass
with a hammer.

Now, 4(t) is not actually a function: the limit defining it doesn’t exist when ¢t = 0, for one thing,.
If there were a way to define it, then properties of integrals show that if g(¢) is any function with
g(t) = 0 whenever t # 0, then ff g(t) = 0 for any a and b. Instead, §(¢) is what is called a
generalized function or distribution, and although it isn’t a function, it can be treated like one in
many ways. Really its defining property is that for any function f(t),

| swswa = 1.
Example 12. Solve the initial value problem
y'+2y +2y=0(t—1), y(0)=0, y'(0)=0.

We apply the Laplace transform. If Y = L (y), then £(y') = sY and L (y”) = s?Y, and the

equation becomes
1

2 _ — _ —
(S +23+2)Y—€8, SO Y—esm.

We complete the square and write this as

1 1

—S —S

2+25+2 ¢ (s+1)241

Therefore

y=LT"(Y) =u(t—1)f(t—1),
where .

_ a1 _ ot
ft)y==°L (7(3—1—1)2—#1) e "sint.

So

y(t) = u(t — 1)e” " Ysin(t — 1),
or

() = 0 ift <1,
7 e Dgine— 1) ife> 1.
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Note that this function is continuous everywhere, but it is not differentiable at ¢ = 1. This is not
surprising, because ¢t = 1 is when the delta function is applied — this example models what happens
in a damped spring system when you hit the mass with a hammer.

Exercises 13. (a) Solve the initial value problem
' 3y +2y=6(t—-1), y(0)=0, y/(0)=0.
(b) Consider the initial value problem
y' +4y=95(t) +ci(t —7), y(0)=0, y'(0)=0,

where ¢ is a constant. What should ¢ be so that the solution stops completely at time 77
That is, what should ¢ be so that the solution has the form

[ o<t<n,
Yo ift>ar



