Math 134: Homework 9

Due December 2
(1) By the Fundamental Theorem of Calculus, if f has a continuous first derivative on the interval $[a, b]$ then

$$
f(b)=f(a)+\int_{a}^{b} f^{\prime}(x) d x
$$

(a) Assume that f has a continuous second derivative on $[a, b]$, and apply integration by parts to the integral above to derive the identity

$$
f(b)=f(a)+f^{\prime}(a)(b-a)-\int_{a}^{b} f^{\prime \prime}(x)(x-b) d x
$$

(b) Finally assume that f has a continuous third derivative on $[a, b]$ and apply integration by parts once more to derive the identity

$$
f(b)=f(a)+f^{\prime}(a)(b-a)+\frac{f^{\prime \prime}(a)}{2}(b-a)^{2}+\frac{1}{2} \int_{a}^{b} f^{\prime \prime \prime}(x)(x-b)^{2} d x .
$$

(2) Evaluate the integral $\int \frac{x^{2}}{\left(x^{2}+4 x+5\right)^{3 / 2}} d x$.
(3) Evaluate the integral $\int \frac{4 \arctan x}{(x+1)^{3}} d x$.

