Math 134: Homework 7

Due November 10

1. Let $F(x)=\int_{\sqrt{x}}^{x^{2}+x} \frac{d t}{2+\sqrt{t}}$. Compute $F^{\prime}(x)$.
2. Assume that f and g are functions so that f, g, f^{\prime}, and g^{\prime} are all continuous on $[a, b]$. Show that

$$
\int_{a}^{b} f^{\prime}(x) g(x) d x=f(b) g(b)-f(a) g(a)-\int_{a}^{b} f(x) g^{\prime}(x) d x
$$

Hint: Compute $\int_{a}^{b}(f(x) g(x))^{\prime} d x$ in two ways.
3. Prove that if f is continuous on $[a, b]$ and if

$$
\int_{a}^{b}|f(x)| d x=0
$$

then $f(x)=0$ for all $x \in[a, b]$. Hint: See exercise 50 in Section 2.4.
4. At each point (x, y) of some curve, the slope is given by the function $g(x)$. The curve passes through the point $\left(x_{0}, y_{0}\right)$. Find an equation $y=f(x)$ for the curve.

Hint: Try an example first: say, the slope of the curve at the point (x, y) is $2 x$ and the curve goes through the point $(0,-3)$. What is the equation of the curve?

