Math 134: Homework 6

Due November 4

1. Just using the definition of the Darboux integral, compute

$$
\int_{0}^{2}(2 x+3) d x
$$

2. Using the Fundamental Theorem of Calculus, show that for all $x \in \mathbf{R}$,

$$
\int_{0}^{x}(t+|t|)^{2} d t=\frac{2}{3} x^{2}(x+|x|)
$$

3. Let f be a function for which f^{\prime} is continuous on $[a, b]$. Using the Fundamental Theorem of Calculus, show that

$$
\int_{a}^{b} f(t) f^{\prime}(t) d t=\frac{1}{2}\left(f^{2}(b)-f^{2}(a)\right)
$$

