## Math 134: Homework 5

Due October 28

1. Suppose that $f(x)$ is concave up on an interval $I$. Show that for any $a, b \in I$ with $a<b$,

$$
f(x)<\frac{f(b)-f(a)}{b-a}(x-a)+f(a)
$$

for all $x \in(a, b)$. (That is, $f(x)$ lies below the chord from $(a, f(a))$ to $(b, f(b))$.
2. Use the result (not your proof, just the result) from part 1 to show that if $f(x)$ is concave down, then for any $a, b \in I$ with $a<b$,

$$
f(x)>\frac{f(b)-f(a)}{b-a}(x-a)+f(a)
$$

for all $x \in(a, b)$.
(Hint: if $f(x)$ is concave down, can you find a related function which is concave up?)
3. Bonus: suppose that for all $a, b \in I$ with $a<b$,

$$
f(x)<\frac{f(b)-f(a)}{b-a}(x-a)+f(a)
$$

for all $x \in[a, b]$. Must $f$ be continuous on $I$ ? Similarly, must $f$ be differentiable on $I$ ? For each question, prove that the answer is "yes" or find a counterexample.

