Math 134: Homework 3
Due October 14

1. Suppose that $f$ is continuous on $[0,1]$ and takes values in $[0,1]$; that is, for all $x \in[0,1]$, we have $0 \leq f(x) \leq 1$. Prove that there is a $c \in[0,1]$ such that $f(c)=c$. Such a point is called a fixed point of $f$. (Hint: Draw a picture. Consider $f(x)-x$.)
2. Let $n$ be a positive integer.
(a) Prove that for real numbers $a$ and $b$, if $0 \leq a<b$, then $a^{n}<b^{n}$. (Hint: Use mathematical induction.)
(b) Prove that for every nonnegative real number $x$, there is a unique nonnegative $n^{t h}$ root, $x^{1 / n}$. (Hint: The existence follows from the intermediate value theorem. Use part (a) to get uniqueness.)
