Math 134: Homework 3 Due October 14

- 1. Suppose that f is continuous on [0,1] and takes values in [0,1]; that is, for all $x \in [0,1]$, we have $0 \leq f(x) \leq 1$. Prove that there is a $c \in [0,1]$ such that f(c) = c. Such a point is called a *fixed point* of f. (Hint: Draw a picture. Consider f(x) x.)
- 2. Let n be a positive integer.
 - (a) Prove that for real numbers a and b, if $0 \le a < b$, then $a^n < b^n$. (Hint: Use mathematical induction.)
 - (b) Prove that for every nonnegative real number x, there is a unique nonnegative n^{th} root, $x^{1/n}$. (Hint: The existence follows from the intermediate value theorem. Use part (a) to get uniqueness.)