Math 134: Homework 2

Due October 7

1. Problem 46 from section 2.2. (Note: Don't use results from Section 2.3 to do this.) For those of you who haven't been able to get the book yet:
(a) Prove that if $\lim _{x \rightarrow c} f(x)=L$, then $\lim _{x \rightarrow c}|f(x)|=|L|$.
(b) Show that the converse is false. Give an example where

$$
\lim _{x \rightarrow c}|f(x)|=|L| \quad \text { and } \quad \lim _{x \rightarrow c} f(x)=M \neq L
$$

and then give an example where

$$
\lim _{x \rightarrow c}|f(x)| \text { exists but } \lim _{x \rightarrow c} f(x) \text { does not exist. }
$$

2. Evaluate the limit (without using l'Hôpital's Rule)

$$
\lim _{x \rightarrow 4}\left(\frac{\sqrt{x}-2}{(x-4)^{2}}-\frac{1}{x^{2}-4 x}\right)
$$

3. Suppose that the function $f: \mathbf{R} \rightarrow \mathbf{R}$ has the property that

$$
|f(x)-f(y)| \leq \frac{1}{2}|x-y|
$$

for all $x, y \in(0,1)$.
(a) Prove that f is continuous on $(0,1)$.
(b) Show that if $\lim _{x \rightarrow 0^{+}} f(x)=0$, then the inequality

$$
-\frac{1}{2} \leq f(x) \leq \frac{1}{2}
$$

holds for all $x \in(0,1)$.

