Mathematics 327 Final Exam
Name: \qquad
June 8, 2009
Instructions: This is a closed book exam, no notes or calculators allowed. Please turn off all cell phones, pagers, etc. Provide reasons for all of your answers.

1. (10 points) For which integers a does the following series converge? For which integers a does it diverge?

$$
\sum_{n=1}^{\infty} \frac{n^{n}}{n!} a^{n}
$$

2. (10 points) Abel's test says:

Suppose that $\sum_{n=0}^{\infty} a_{n}$ is convergent, and that $b_{n}>0$ and $b_{n} \geq b_{n+1}$ for all $n \geq 0$.
Then $\sum_{n=0}^{\infty} a_{n} b_{n}$ is convergent.
Prove this.
3. (As in the text book, "log" means the natural log.)
(a) (5 points) Does the series $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{2}}$ converge or diverge?
(b) (5 points) Does the series $\sum_{n=1}^{\infty} \frac{1}{n^{\log n}}$ converge or diverge?
(c) (5 points) For which real numbers x does the series $\sum_{n=1}^{\infty} \frac{x^{n}}{3 n}$ converge, and for which does it diverge?
4. (15 points) Define $f(x)$ by

$$
f(x)=\sum_{n=0}^{\infty} \frac{x^{2}}{\left(1+x^{2}\right)^{n}}
$$

for all real numbers x.
(a) Find a simple expression for $f(x)$ when $x \neq 0$. (Hint: factor out x^{2} and use a geometric series.)
(b) What is $f(0)$? Does $f(x)$ have any discontinuities? Can you deduce anything about uniform convergence?
(c) Show that if a is any positive real number, then the series converges uniformly on the interval $[a, \infty)$.
5. (10 points) Let $f(x)=\sum_{n=1}^{\infty} \frac{\sin n x}{n^{2}}$ for $0 \leq x \leq 2 \pi$.
(a) Does the series converge uniformly to $f(x)$?
(b) Is the equality

$$
\frac{d}{d x} f(x)=\sum_{n=1}^{\infty} \frac{d}{d x}\left(\frac{\sin n x}{n^{2}}\right)
$$

valid for all x in $[0,2 \pi]$? (Or as the book phrases it, can $f^{\prime}(x)$ be calculated for each x in the specified interval by differentiating the series for $f(x)$ term by term?)

