Mathematics 135 Quiz 7 Name:

\qquad
March 4, 2010
Instructions: This is a closed book quiz, no notes or calculators allowed. Please turn off all cell phones, pagers, etc.

1. Simplify the expression

$$
(\mathbf{a}+\mathbf{b}) \times(\mathbf{a}-\mathbf{b}) .
$$

Explain your steps.

Solution:

$$
\begin{aligned}
(\mathbf{a}+\mathbf{b}) \times(\mathbf{a}-\mathbf{b}) & =\mathbf{a} \times(\mathbf{a}-\mathbf{b})+\mathbf{b} \times(\mathbf{a}-\mathbf{b}) \quad \text { (distributivity) } \\
& =\mathbf{a} \times \mathbf{a}-\mathbf{a} \times \mathbf{b}+\mathbf{b} \times \mathbf{a}-\mathbf{b} \times \mathbf{b} \quad \text { (distributivity) } \\
& =\mathbf{0}-\mathbf{a} \times \mathbf{b}+\mathbf{b} \times \mathbf{a}-\mathbf{0} \quad(\text { since } \mathbf{a} \times \mathbf{a}=\mathbf{0}) \\
& =-\mathbf{a} \times \mathbf{b}-\mathbf{a} \times \mathbf{b} \quad(\text { since } \mathbf{b} \times \mathbf{a}=-\mathbf{a} \times \mathbf{b}) \\
& =-2(\mathbf{a} \times \mathbf{b})
\end{aligned}
$$

Of course, $2(\mathbf{b} \times \mathbf{a})$ is an equally valid answer.
2. Suppose that $d_{1} D_{1}+d_{2} D_{2}+d_{3} D_{3}=0$. What can you conclude about the lines

$$
\frac{x-x_{0}}{d_{1}}=\frac{y-y_{0}}{d_{2}}=\frac{z-z_{0}}{d_{3}}, \quad \frac{x-x_{0}}{D_{1}}=\frac{y-y_{0}}{D_{2}}=\frac{z-z_{0}}{D_{3}} ?
$$

Solution: First, the lines intersect: they both go through the point $\left(x_{0}, y_{0}, z_{0}\right)$. The equation $d_{1} D_{1}+d_{2} D_{2}+d_{3} D_{3}=0$ says that the dot product of their direction vectors $\left(d_{1}, d_{2}, d_{3}\right)$ and ($\left.D_{1}, D_{2}, D_{3}\right)$ is zero. Since the dot product being zero means that the vectors are perpendicular, we conclude that the lines intersect at right angles to each other.

