Mathematics 135 Quiz 6

Name: \qquad
February 18, 2010
Instructions: This is a closed book quiz, no notes or calculators allowed. Please turn off all cell phones, pagers, etc.

1. Use Laplace transforms to solve the initial value problem

$$
y^{\prime \prime}+5 y^{\prime}+4 y=9 e^{2 t}, \quad y(0)=0, \quad y^{\prime}(0)=3
$$

(There's a table of Laplace transforms on the back.)

Solution: Apply the Laplace transform to the differential equation: if we write Y for $\mathcal{L}(y(t))$, it becomes

$$
\left(s^{2} Y-3\right)+5 s Y+4 Y=\frac{9}{s-2}
$$

so

$$
\left(s^{2}+5 s+4\right) Y=\frac{9}{s-2}+3=\frac{9+3 s-6}{s-2}=\frac{3 s+3}{s-2}
$$

So

$$
Y=\frac{3 s+3}{(s-2)\left(s^{2}+5 s+4\right)}=\frac{3 s+3}{(s-2)(s+1)(s+4)}=\frac{3}{(s-2)(s+4)}
$$

Use partial fractions now:

$$
Y=\frac{1 / 2}{s-2}-\frac{1 / 2}{s+4}
$$

Now apply the inverse Laplace transform:

$$
y=\frac{1}{2} e^{2 t}-\frac{1}{2} e^{-4 t}
$$

