Mathematics 135 Quiz 5

Name: \qquad
February 11, 2010
Instructions: This is a closed book quiz, no notes or calculators allowed. Please turn off all cell phones, pagers, etc.

1. Find the solution to the initial value problem

$$
y^{\prime \prime}+4 y=8 \sin (2 x), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

Solution: This is a second order linear constant coefficient nonhomogeneous equation. The associated homogeneous equation is

$$
y^{\prime \prime}+4 y=0,
$$

which has characteristic equation $m^{2}+4=0$. This has roots $m= \pm 2 i$, so the complementary solution y_{c} is

$$
y_{c}=c_{1} \cos 2 x+c_{2} \sin 2 x .
$$

To find a particular solution, the first guess might be

$$
y_{p}=A \cos 2 x+B \sin 2 x,
$$

but for any choice of A and B, this is a solution to the homogeneous equation, so it won't work. Multiplying by x should fix this: try

$$
y_{p}=A x \cos 2 x+B x \sin 2 x .
$$

I want to plug this into the differential equation, so I calculate its derivatives:

$$
\begin{aligned}
& y_{p}^{\prime}=-2 A x \sin 2 x+A \cos 2 x+2 B x \cos 2 x+B \sin 2 x, \\
& y_{p}^{\prime \prime}=-4 A x \cos 2 x-4 A \sin 2 x-4 B x \sin 2 x+4 B \cos 2 x .
\end{aligned}
$$

Therefore $y_{p}^{\prime \prime}+y_{p}$ equals $-4 A \sin 2 x+4 B \cos 2 x$. This must equal $8 \sin 2 x$, which means that $A=-2$ and $B=0$, so $y_{p}=-2 x \cos 2 x$, and the general solution is

$$
y=c_{1} \cos 2 x+c_{2} \sin 2 x-2 x \cos 2 x .
$$

Now we plug in the initial conditions to find c_{1} and c_{2} : since $y(0)=0$, we get $c_{1}=0$, and since $y^{\prime}(0)=0$, we get $c_{2}=1$:

$$
y^{\prime}(x)=-2 c_{1} \sin 2 x+2 c_{2} \cos 2 x-2 \cos 2 x+4 x \sin 2 x
$$

and plugging in $x=0$ and $y^{\prime}=0$ gives $2 c_{2}-2=0$. So the answer is

$$
y=\sin 2 x-2 x \cos 2 x .
$$

It's a good idea to check your work: plug $x=0$ into both y and y^{\prime} to make sure you get zero, and plug y into the differential equation to make sure it's actually a solution.

