Mathematics 135 Quiz 4

Name: \qquad
February 4, 2010
Instructions: This is a closed book quiz, no notes or calculators allowed. Please turn off all cell phones, pagers, etc.

1. Find the solution to the initial value problem

$$
y^{\prime}+\frac{1}{x} y=x^{2}, \quad y(1)=0 .
$$

Solution: This is a first order linear equation. The integrating factor is therefore

$$
e^{\int 1 / x d x}=e^{\ln |x|}=|x|=x .
$$

(Since we are interested in the solution where $x_{0}=1$, which is positive, we may assume, at least at the start, that $x>0$. Then, since the equation doesn't make sense when $x=0$, it doesn't make sense for our solution to extend to non-positive numbers. So throughout, we may assume that $x>0$.)
So multiply the equation by x and integrate:

$$
\begin{gathered}
x y^{\prime}+y=x^{3} \\
\frac{d}{d x}(x y)=x^{3} \\
x y=\int x^{3} d x=\frac{1}{4} x^{4}+c \\
y=\frac{1}{4} x^{3}+c x^{-1} .
\end{gathered}
$$

Now apply the initial condition $y(1)=0$:

$$
0=\frac{1}{4}+c, \quad \text { so } \quad c=1
$$

The solution is therefore

$$
y=\frac{1}{4} c^{3}-\frac{1}{4} x^{-1} .
$$

2. Consider the initial value problem

$$
y^{\prime}=x^{2}+y^{2}, \quad y(0)=1 .
$$

Starting with $y_{0}(x)=1$, compute the first Picard iterate $y_{1}(x)$.

Solution: The formula for $y_{1}(x)$ is

$$
y_{1}(x)=y_{0}+\int_{x_{0}}^{x} f\left(t, y_{0}(t)\right) d t
$$

In this case, $x_{0}=0, y_{0}=1$, and $y_{0}(t)$ is the constant function 1. Also, $f(t, y)=$ $t^{2}+y^{2}$. So the formula becomes

$$
y_{1}(x)=1+\int_{0}^{x}\left(t^{2}+1\right) d t=1+x+\frac{x^{3}}{3} .
$$

