Mathematics 135 Quiz 2 Name: $\qquad$
January 14, 2010
Instructions: This is a closed book quiz, no notes or calculators allowed. Please turn off all cell phones, pagers, etc. As always, justify all of your answers.

1. Does the series $\sum_{k=1}^{\infty}\left(\frac{k+1}{k}\right)^{k}$ converge or diverge? If it converges, can you find the sum?

Solution: It diverges because the limit of the terms is not zero:

$$
\lim _{k \rightarrow \infty}\left(\frac{k+1}{k}\right)^{k}=\lim _{k \rightarrow \infty}\left(1+\frac{1}{k}\right)^{k}=e
$$

In any series, if the limit of the terms is not zero, the series must diverge.
2. Does the series $\sum_{k=0}^{\infty} \frac{1}{2^{k+3}}$ converge or diverge? If it converges, can you find the sum?

Solution: It converges, and we can evaluate the sum using basic properties of series and appealing to the formula for a geometric series:

$$
\begin{aligned}
\sum_{k=0}^{\infty} \frac{1}{2^{k+3}} & =\frac{1}{2^{3}} \sum_{k=0}^{\infty} \frac{1}{2^{k}}=\frac{1}{8} \sum_{k=0}^{\infty}\left(\frac{1}{2}\right)^{k} \\
& =\frac{1}{8} \frac{1}{1-1 / 2}=\frac{1}{8} \cdot 2=\frac{1}{4}
\end{aligned}
$$

