Mathematics 135 Midterm 2 Name: $\qquad$
February 26, 2010
Instructions: This is a closed book exam, no notes or calculators allowed. Please turn off all cell phones, pagers, etc. As usual, justify all of your answers.

1. (10 points) Let $c$ be a constant, and let $y(t)$ be the solution to the initial value problem

$$
y^{\prime \prime}-4 y=\delta(t-1)+c \delta(t-3), \quad y(0)=0, y^{\prime}(0)=0 .
$$

For what value(s) of $c$ does $y(t)$ satisfy $\lim _{t \rightarrow \infty} y(t)=0$ ?

Solution: Let's find $y(t)$ first. Take Laplace transforms:

$$
\left(s^{2}-4\right) \mathcal{L}(y)=e^{-s}+c e^{-3 s},
$$

so

$$
\begin{aligned}
\mathcal{L}(y) & =\left(e^{-s}+c e^{-3 s}\right) \frac{1}{s^{2}-4}=\left(e^{-s}+c e^{-3 s}\right) \frac{1}{(s-2)(s+2)} \\
& =\left(e^{-s}+c e^{-3 s}\right)\left(\frac{1 / 4}{s-2}-\frac{1 / 4}{s+2}\right) .
\end{aligned}
$$

Therefore

$$
y=\frac{1}{4} u(t-1)\left(e^{2(t-1)}-e^{-2(t-1)}\right)+\frac{c}{4} u(t-3)\left(e^{2(t-3)}-e^{-2(t-3)}\right) .
$$

So for $t>3$,

$$
y=\frac{1}{4}\left(e^{2(t-1)}-e^{-2(t-1)}\right)+\frac{c}{4}\left(e^{2(t-3)}-e^{-2(t-3)}\right) .
$$

For this to go to zero as $t \rightarrow \infty$, the coefficient of $e^{2 t}$ must be zero. That coefficient is

$$
\frac{1}{4} e^{-2}+\frac{c}{4} e^{-6}
$$

Set this equal to zero and solve for $c: c=-e^{4}$.
2. (10 points) The solution to the initial value problem

$$
\left(1+x^{2}\right) y^{\prime \prime}+y^{\prime}-2 y=0, \quad y(0)=1, y^{\prime}(0)=2
$$

can be expressed in the form $y=\sum_{n=0}^{\infty} a_{n} x^{n}$. Find the recursion formula for the coefficients. Also find $a_{0}, a_{1}, a_{2}$ and $a_{3}$.

Solution: If $y=\sum a_{n} x^{n}$, then $y^{\prime}=\sum n a_{n} x^{n-1}$ and $y^{\prime \prime}=\sum n(n-1) a_{n} x^{n-2}$, all sums starting at $n=0$. Therefore the differential equation is

$$
\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2}+\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n}+\sum_{n=0}^{\infty} n a_{n} x^{n-1}-\sum_{n=0}^{\infty} 2 a_{n} x^{n}=0
$$

Reindex all of the sums so that they are in terms of $x^{n}$ :

$$
\sum_{n=-2}^{\infty}(n+2)(n+1) a_{n+2} x^{n}+\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n}+\sum_{n=-1}^{\infty}(n+1) a_{n+1} x^{n}-\sum_{n=0}^{\infty} 2 a_{n} x^{n}=0
$$

In the first sum, the $n=-1$ and $n=-2$ terms are zero, so it can start at $n=0$ instead of $n=-2$; similarly for the third sum. So we get

$$
\sum_{n=0}^{\infty}\left[(n+2)(n+1) a_{n+2}+n(n-1) a_{n}+(n+1) a_{n+1}-2 a_{n}\right] x^{n}=0
$$

The coefficient of each power of $x$ must be zero, so we get the recursion formula by setting the coefficient of $x^{n}=0$ : for each $n \geq 0$,

$$
(n+2)(n+1) a_{n+2}+\left(n^{2}-n-2\right) a_{n}+(n+1) a_{n+1}=0
$$

Note that $n^{2}-n-2=(n-2)(n+1)$, so we can cancel a factor of $n+1$, resulting in the recursion formula:

$$
a_{n+2}=\frac{-(n-2) a_{n}-a_{n+1}}{n+2} .
$$

From the initial conditions, $a_{0}=1$ and $a_{1}=2$. From the recursion relation, $a_{2}=0$ and $a_{3}=2 / 3$.
3. (10 points) Find the general solution to the equation

$$
y^{\prime \prime}+2 y^{\prime}+2 y=2 \cos t .
$$

Solution: The characteristic equation is $m^{2}+2 m+2=0$, which has roots $m=$ $-1 \pm i$. Therefore

$$
y_{c}=c_{1} e^{-t} \sin t+c_{2} e^{-t} \cos t .
$$

For $y_{p}$, try $y_{p}=A \cos t+B \sin t$. Plug this in and solve for $A$ and $B$; you should get $A=2 / 5$ and $B=4 / 5$. Therefore the general solution is

$$
y=c_{1} e^{-t} \sin t+c_{2} e^{-t} \cos t+\frac{2}{5} \cos t+\frac{4}{5} \sin t .
$$

4. Consider the equation

$$
y^{\prime \prime}-4 y^{\prime}+4 y=f(t) .
$$

(a) (2 points) What is $y_{c}$, the general solution to the associated homogeneous equation?

Solution: The characteristic equation is $m^{2}-4 m+4=0$, which has $m=2$ as a double root. So

$$
y_{c}=c_{1} e^{2 t}+c_{2} t e^{2 t} .
$$

(b) (4 points) Let $f(t)=\left(t^{2}-7\right) \cos 2 t$. According to the method of undetermined coefficients, what should you try for $y_{p}$ ? (Don't solve for the coefficients: just give me the form for $y_{p}$.)

Solution: Since $f(t)$ has no terms in common with $y_{c}, y_{p}$ takes the form

$$
y_{p}=\left(A t^{2}+B t+C\right) \cos 2 t+\left(D t^{2}+E+F\right) \sin 2 t .
$$

(c) (4 points) Let $f(t)=t e^{2 t}$. According to the method of undetermined coefficients, what should you try for $y_{p}$ ? (Don't solve for the coefficients: just give me the form for $y_{p}$.)

Solution: In this case, $f(t)$ is a polynomial multiplied by a summand in $y_{c}$, so the initial guess $(A t+B) e^{2 t}$ won't work. Multiply it by $t^{2}$ instead:

$$
y_{p}=\left(A t^{3}+B t^{2}\right) e^{2 t} .
$$

5. (5 points) Let $f(t)$ be a continuous function, and suppose that $y_{1}(t)$ and $y_{2}(t)$ are solutions to the equation

$$
y^{\prime \prime}+4 y=f(t)
$$

satisfying the initial conditions

$$
y_{1}(0)=2, y_{1}^{\prime}(0)=2, \quad y_{2}(0)=2, y_{2}^{\prime}(0)=0
$$

Find $y_{1}(t)-y_{2}(t)$.

Solution: Since this is a linear equation, the general solution has the form $y=$ $y_{c}+y_{p}$. Therefore the difference between any two solutions is a solution to the associated homogeneous equation. In this case, since the characteristic equation is $m^{2}+4=0$ with roots $m= \pm 2 i$, that means that the difference $y_{\text {diff }}=y_{1}-y_{2}$ takes the form

$$
y_{\text {diff }}=c_{1} \cos 2 t+c_{2} \sin 2 t
$$

Furthermore, we know that $y_{\text {diff }}$ satisfies the initial conditions

$$
y_{\mathrm{diff}}(0)=y_{1}(0)-y_{2}(0)=0, \quad y_{\mathrm{diff}}^{\prime}(0)=y_{1}^{\prime}(0)-y_{2}^{\prime}(0)=2 .
$$

Therefore

$$
y_{\mathrm{diff}}=\sin 2 t .
$$

6. (5 points) Find the general solution to the equation

$$
x^{2} y^{\prime}+x y=3 x^{3} .
$$

Solution: This is a first order linear equation. Put it in standard form by dividing by the coefficient of $y^{\prime}: y^{\prime}+(1 / x) y=3 x$. Then the integrating factor is $e^{\int P(x) d x}$, where $P(x)=1 / x$. This integrating factor is therefore equal to $x$, and the equation becomes

$$
x y^{\prime}+y=3 x^{2}
$$

Integrate:

$$
x y=x^{3}+c, \quad \text { so } \quad y=x^{2}+c x^{-1}
$$

