Midterm 2 review

Topics:

- linear first order equations and their integrating factors
- Picard iteration
- linear degree n equations, linear independence, form of the general solution in both the homogeneous and non-homogeneous cases
- solving linear constant coefficient homogeneous equations using the characteristic equation
- finding a second solution to a linear homogeneous equation using reduction of order
- solving linear constant coefficient nonhomogeneous equations using the method of undetermined coefficients and using variation of parameters
- Laplace transforms and inverse Laplace transforms: basic formulas, using tables, discontinuous forcing functions, the Dirac δ-function
- solving linear constant coefficient equations using Laplace transforms
- power series solutions, method of Frobenius

An old Math 135 midterm

(1) (10 points) Find the general solution of the differential equation $y^{\prime \prime}+y=2 t^{2}+t$.
(2) (5 points) Find a particular solution of the differential equation $y^{\prime \prime}-y=\left(1+t^{2}\right)^{-1}$. Express your answer in terms of integrals, and do not attempt to evaluate these integrals.
(3) (5 points) Is there a differential equation of the form $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$, with p and q continuous on the open interval $-1<t<1$, for which the functions $y=t^{4}$ and $y=t^{6}$ are both solutions? Explain your answer.
(4) (10 points) The solution of the initial value problem

$$
y^{\prime \prime}+(t+1) y^{\prime}+y=0, \quad y(0)=1 \quad y^{\prime}(0)=0
$$

can be expressed in the form $y=\sum_{k=0}^{\infty} a_{k} t^{k}$. Find the recursion formula for the coefficients.
(5) (a) (2 points) Find $\mathcal{L}^{-1}\left[\frac{1}{(s-1)^{2}}\right]$.
(b) (3 points) Use the result of part (a) to find $\mathcal{L}^{-1}\left[\frac{e^{-3 s}}{(s-1)^{2}}\right]$.
(c) (5 points) Use the results of parts (a) and (b) to solve the initial value problem

$$
y^{\prime \prime}-2 y^{\prime}+y=\delta(t-3), \quad y(0)=0, \quad y^{\prime}(0)=1
$$

(6) (10 points) By computing Laplace transforms, show that the solution of the initial value problem

$$
y^{\prime \prime}-y=f(t), \quad y(0)=y^{\prime}(0)=0
$$

can be written as a convolution of f with another function. What is that other function?

