Three old Math 135 midterms

(1) Evaluate $\lim _{x \rightarrow 0} \frac{x \sin \left(x^{2}\right)-\sin \left(x^{3}\right)}{\sin \left(x^{7}\right)}$ in any way you wish.
(2) Evaluate the integral $\int_{-1}^{1} \frac{x}{\sqrt{1-x^{2}}} d x$ or explain why you can't.
(3) Consider the power series $\sum_{k=1}^{\infty} \frac{2^{k} \ln (k+1)}{k} x^{k}$.
(a) Find its radius of convergence.
(b) Find its interval of convergence.
(c) For what values of x the series absolutely convergent? For what values of x is the series conditionally convergent?
(4) Consider the sequence $\left\{a_{k}\right\}$ defined by $a_{0}=0, a_{n+1}=1+m a_{n}$, where m is a real number with $|m|<1$. Does the sequence converge? Explain your answer. If the sequence does converge, what is its limit?
(5) Find the first three non-zero terms in the series expansion of $\arcsin (x)$ about $x=0$.

Hint: Recall that $\arcsin (x)=\int_{0}^{x}\left(1-t^{2}\right)^{-1 / 2} d t$. If you wish, you may use the binomial expansion of $(1+x)^{-1 / 2}$.
(1) Evaluate $\lim _{x \rightarrow 0} \frac{\cosh x-\cos x}{\sin x^{2}}$ in any way you wish.
(2) Is the series $\sum_{k=1}^{\infty}(-1)^{k} \frac{\ln k}{k^{3}+\ln k+1}$ absolutely convergent, conditionally convergent, or divergent? Justify your answer
(3) Evaluate the integral $\int_{-1}^{1} \frac{2 x}{1-x^{2}} d x$ or explain why you can't.
(4) Give the Taylor series about 0 of the function $f(x)=\int_{0}^{x} \sin \left(t^{2}\right) d t$. For what values of x does the series converge to $f(x)$? Justify your answer.
(5) Consider the sequence $\left\{a_{k}\right\}$ defined by $a_{0}=0$,

$$
a_{0}=1, \quad a_{n+1}=1-a_{n} / 2 \text { for } n=0,1,2, \ldots
$$

Show that the sequence converges to $2 / 3$.
(1) Evaluate the limit $\lim _{x \rightarrow 0} \frac{\cosh x-\cos x}{x^{2}}$.
(2) Evaluate the integral $\int_{-\infty}^{\infty} \frac{x}{1+x^{2}} d x$ or explain why you can't.
(3) Does the series $1+\frac{1 \cdot 2}{1 \cdot 3}+\frac{1 \cdot 2 \cdot 3}{1 \cdot 3 \cdot 5}+\frac{1 \cdot 2 \cdot 3 \cdot 4}{1 \cdot 3 \cdot 5 \cdot 7}+\ldots$ converge?
(4) Test the following two series for (i) absolute and (ii) conditional convergence.

$$
\begin{aligned}
& \text { (a) } \sum_{n=1}^{\infty}(-1)^{k} \frac{k+2}{k^{2}+k} \\
& \text { (b) } \sum_{n=1}^{\infty} \frac{k^{k}}{k!}
\end{aligned}
$$

(5) Let S be the set of numbers of the form $(-1)^{n^{2}} \frac{n+1 / n \text { ! }}{n+1}$ for $n \geq 2$. Explain why S does or does not have a least upper bound. If it has a least upper bound, what is it? Answer the same question about greatest lower bounds.

