Math 135: Homework 9
Due Thursday, March 4
(1) Show that for any vectors \mathbf{a} and \mathbf{b},

$$
|\|\mathbf{a}\|-\|\mathbf{b}\|| \leq\|\mathbf{a}-\mathbf{b}\|
$$

$($ Hint: $\mathbf{a}=(\mathbf{a}-\mathbf{b})+\mathbf{b}$.
(2) Let T denote the tetrahedron centered at the origin O with vertices at the points $P_{1}(1,1,1), P_{2}(-1,-1,1), P_{3}(1,-1,-1)$, and $P_{4}(-1,1,-1)$. Using vector methods, find the cosine of the angles $\angle P_{i} O P_{j}$ for all $i \neq j$. What are the approximate angles (in degrees)?
(3)
(a) Suppose that $\mathbf{a} \cdot \mathbf{b}=0$ and $\mathbf{a} \times \mathbf{b}=\mathbf{0}$. Show that either $\mathbf{a}=\mathbf{0}$ or $\mathbf{b}=\mathbf{0}$.
(b) Now suppose that $\mathbf{a} \neq \mathbf{0}$. If \mathbf{c} and \mathbf{d} are vectors for which

$$
\mathbf{a} \cdot \mathbf{c}=\mathbf{a} \cdot \mathbf{d} \text { and } \mathbf{a} \times \mathbf{c}=\mathbf{a} \times \mathbf{d}
$$

use the result of (a) to prove that $\mathbf{c}=\mathbf{d}$.

