Math 135: Homework 6

Due Thursday, February 11

1. In the following, you are given a differential equation and one solution of it. Use reduction of order to use find the general solution. We discussed this in class on Monday: try a solution of the form $y=u(x) y_{1}(x)$ and solve for the unknown function $u(x)$. (This is also discussed in the book: in the constant coefficient case, see Lesson 20.C, and with nonconstant coefficients but using slightly different notation, in Lesson 23.)
(a) $x^{2} y^{\prime \prime}-x(x+2) y^{\prime}+(x+2) y=0, y_{1}(x)=x$.
(b) $x y^{\prime \prime}-(x+2) y^{\prime}+2 y=0, y_{1}(x)=e^{x}$.
(c) $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=0, y_{1}(x)=x^{-1 / 2} \sin x$.
2. Fix an interval $I=(a, b)$. Let $y_{1}(x)$ and $y_{2}(x)$ be solutions of $y^{\prime \prime}+p(x) y^{\prime}+$ $q(x) y=0$ on I, where $p(x), q(x)$ are continuous functions on I. Show that if there is a point in I where both y_{1} and y_{2} both vanish or where both have maxima or minima, then one of y_{1} and y_{2} is a multiple of the other.
