Math 135: Homework 5

Due Thursday, February 4

1. Fix a real constant α. Show that $\sum_{k=0}^{\infty} \frac{\sin \alpha k}{2^{k}}$ converges. Evaluate the sum exactly (in terms of α) by using the fact that $\sin \alpha k=\operatorname{Im}\left(e^{i \alpha k}\right)$. Hints: You may assume that all of the series we've been discussing work equally well with complex numbers as with real numbers. Also, note that for any real numbers a and b, we have $\frac{1}{a+i b}=\frac{a}{a^{2}+b^{2}}-i \frac{b}{a^{2}+b^{2}}$.
2. Fix a real constant λ and consider the second order differential equation

$$
y^{\prime \prime}+\lambda y=0
$$

Let a and b be real numbers.
(a) Check that $y=a x+b$ satisfies the equation when $\lambda=0$.
(b) Check that $y=a \cos (\sqrt{\lambda} x)+b \sin (\sqrt{\lambda} x)$ satisfies the equation when $\lambda>0$.
(c) Check that $y=a \cosh (\sqrt{-\lambda} x)+b \sinh (\sqrt{-\lambda} x)$ satisfies the equation when $\lambda<0$.

