Math 135: Homework 2 Due Thursday, January 14

- (1) Let $\{a_n\}$ be the sequence defined inductively by $a_1 = 1$, $a_{n+1} = \frac{1}{a_n^4 + 16}$.
 - (a) Show that $\{a_n\}$ is a Cauchy sequence.
 - (b) Show that $\{a_n\}$ converges to a solution of the equation $x^5 + 16x 1 = 0$.
 - (c) Show that if $\{b_n\}$ is the sequence defined by $b_1 = 2$, $b_{n+1} = \frac{1}{b_n^4 + 16}$, then $\{b_n\}$ is convergent and $\lim_{n \to \infty} b_n = \lim_{n \to \infty} a_n$.

Hint: Consider the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = 1/(x^4 + 16)$.

(2) Show that the equation

$$x = 1 + \int_0^x \frac{\cos(t)}{t^2 + 4} dt$$

has one and only one solution.

(3) Recall that (by definition) $\lim_{x\to\infty} f(x) = L$ if and only if for every real number $\epsilon > 0$ there is a real number x_0 such that $|f(x) - L| < \epsilon$ for all $x > x_0$.

Prove the following:

$$\lim_{x\to\infty}f(x)=L \text{ if and only if } \lim_{t\to 0^+}f(1/t)=L\,.$$

(4) Show that for any real number c,

$$\lim_{x \to \infty} \left(\frac{x+c}{x-c} \right)^x = e^{2c} .$$