Math 135: Homework 1

Due Thursday, January 7

1. Let $\left\{a_{n}\right\}$ be a bounded sequence. Prove that if $\left\{a_{n}\right\}$ is nonincreasing then it converges to its greatest lower bound.
2. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be sequences such that $a_{n} \rightarrow 0$ and $\left\{b_{n}\right\}$ is bounded. Prove that $a_{n} b_{n} \rightarrow 0$.
3. Suppose that f is a differentiable function on $(0, \infty)$ such that $f^{\prime}(x) \rightarrow 0$ as $x \rightarrow \infty$. Show that

$$
\lim _{n \rightarrow \infty}(f(n+1)-f(n))=0
$$

For instance, $\sqrt{n+1}-\sqrt{n} \rightarrow 0$ as $n \rightarrow \infty$ even though $\sqrt{n} \rightarrow \infty$ as $n \rightarrow \infty$.
Hint: Mean value Theorem.

