Math 135A, Winter 2010 Fixed Points

Sequences are often defined by recursion. For example, suppose that f : R — R is a function and
xo is a real number. Then we may define a sequence {x,} iteratively

x1 = f(xo), w2 = f(21),
and in general by the formula
Tnt1 = f(zp) forn=0,1,2,....

The purpose of this handout is to study this sequence, for a certain family of functions.

We begin with some definitions. Throughout this handout, {2 C R denotes a set of one of the forms
[a,b] for a < b, [a,00), (—00,b], or R; and f denotes a function of the form

f:9—=0Q
(i.e. Q is the domain of f and the range of f is contained in 2).

Definition 1. The function f is said to be a contraction map if there is a real number K with
0 < K < 1 for which
()~ F(y)] < Kla— y] for all a,y € Q.

For example, if f(z) is differentiable and if there is a real number K with 0 < K < 1 so that
|f'(x)] < K for all x in the interior of Q, then f is a contraction. (Prove this!)

Lemma 2. If f is a contraction map then f is continuous on €.

Proof. Exercise. O
Definition 3. A point xo € 2 is called a fized point of f if f(xg) = xo.

Lemma 4. A contraction map has at most one fixed point.

Proof. Exercise O

Theorem 5. Let f : Q — Q be a contraction map and let xy € . Then the sequence {z,} defined
inductively by xn11 = f(xy), for n >0, is a Cauchy sequence. Moreover, the limit xoo = lim xy,

n—oo
s a fized point of f.

Corollary 6. Let f : Q — Q be a contraction map. Then f has exactly one fized point.

We will prove the theorem through a series of lemmas.

Lemma 7. Suppose x, — Too. Then xo is a fived point.
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Proof. First note since (2 is either a closed interval or all of R, then zo, € Q. Hence f(z) is
defined. (Why?)

To see that f(Zo) = Zoo, choose any € > 0. Then there is an integer N > 0 such that |z, — 2| < €
for all n > N. Choose any n > N, and use the triangle inequality to estimate as follows:

[f(Zoo) = Too| = |f(2oo) = flan) + f(2n) = Too| < |f(2oo) = flan)| + |f(2n) — 2ol

< Kl|Zoo — Tp| + |Tnt1 — Too| < 2e.
Since € was arbitrary, it follows that f(zs) = Zoo- O
Lemma 8. The sequence {xy} is bounded. In particular, there is a real number R so that |x,—xo| <

R for alln > 0.

Proof. Let A = |x1 — xp|. Observe that for any n > 1,
|55n - $n71| = |f(xn71) - f(xan)’ < K|$n71 — Tp-2|-
Repeating this step n times yields the inequality
|Tn — Tnoq| < AK™L
valid for all n > 1. Thus,
|20 — 20| = [Tn — Tn—1 + Tpn-1 — Tn2 + Tp_2+ -+ (1 — 20)|
< ’xn - xn—1| + ‘xn—l - xn—Q‘ +--+ ‘xl - wO’
A
1-K°
Let R=A/(1 — K); then |z, — zo| < R for all n. O

<K 4 KP4+ K4+ 1)A<

Lemma 9. The sequence {z,} is Cauchy.

Proof. Choose any € > 0. Since 0 < K < 1, there is an integer N > 0 for which
2REN <.
where R is as in the previous lemma.
We claim that |z, — x| < € for all n,m > N. To see this, note first that by definition of R,
|zn—nN — zo] < R and |z—n — 20| < R.
Hence, by the triangle inequality, |x,—n — 2m—n| < 2R. Now observe that
Tn=(fofo-of)(xn-n) and zp = (fofo- -0 f)(Xm-n).
N N

Therefore
‘xm - xn‘ < KN’xm—N - mn—N’ < 2RKN <€,

which is what we needed to prove. O



