Mathematics 135 Final Exam Name:

\qquad
March 15, 2010
Instructions: This is a closed book exam, no notes or calculators allowed. Please turn off all cell phones, pagers, etc. When you have a choice, real solutions are preferable to complex ones. As usual, justify all of your answers.
Q: What do you get when you cross an orange with a banana?
A: Orange banana $\sin \theta$.

1. (5 points) Suppose that a curve C is specified parametrically by a vector function $\mathbf{r}(t)$. What is the formula for the curvature κ ? For full credit, do not express your answer in terms of an arc length parametrization.

Solution: Let $\mathbf{T}(t)$ be the unit tangent vector, defined by

$$
\mathbf{T}=\frac{\mathbf{r}^{\prime}}{\left\|\mathbf{r}^{\prime}\right\|}
$$

Then

$$
\kappa=\frac{\left\|\mathbf{T}^{\prime}(t)\right\|}{\left\|\mathbf{r}^{\prime}(t)\right\|}
$$

2. (10 points) Find the radius of convergence for the series

$$
\sum_{k=0}^{\infty} \frac{(2 k)^{k}}{k!} x^{2 k}
$$

Solution: Use the ratio test: if b_{k} denotes the k th term in the series, then

$$
\begin{aligned}
\left|\frac{b_{k+1}}{b_{k}}\right| & =\left|\frac{2^{k+1}(k+1)^{k+1} k!x^{2(k+1)}}{2^{k} k^{k}(k+1)!x^{2 k}}\right| \\
& =\left|\frac{2(k+1)^{k+1} x^{2}}{k^{k}(k+1)}\right| \\
& =2 x^{2}\left(\frac{k+1}{k}\right)^{k} \\
& =2 x^{2}\left(1+\frac{1}{k}\right)^{k}
\end{aligned}
$$

Since $(1+1 / k)^{k} \rightarrow e$, the limit of this ratio is $2 x^{2} e$. This is less than 1 , guaranteeing convergence, if $x^{2} \leq 1 / 2 e$, which means that $|x|<1 / \sqrt{2 e}$. Thus the radius of convergence is $1 / \sqrt{2 e}$.
3. (10 points) Define a curve by

$$
\mathbf{r}(t)=\cos 3 t \mathbf{i}+t \mathbf{j}-\sin 3 t \mathbf{k}
$$

Find its binormal $\mathbf{B}(t)$: this is defined by $\mathbf{B}=\mathbf{T} \times \mathbf{N}$, where $\mathbf{T}=\mathbf{T}(t)$ is the unit tangent vector and $\mathbf{N}=\mathbf{N}(t)$ is the principal normal vector.
(Check your work: what should the dot product $\mathbf{T} \cdot \mathbf{B}$ be? How about $\mathbf{N} \cdot \mathbf{B}$? How about $\mathbf{B} \cdot \mathbf{B}$?)

Solution: First we compute $\mathbf{T}=\mathbf{r}^{\prime} /\left\|\mathbf{r}^{\prime}\right\|$:

$$
\mathbf{r}^{\prime}(t)=-3 \sin 3 t \mathbf{i}+\mathbf{j}-3 \cos 3 t \mathbf{k}
$$

which has length $\|\mathbf{r}\|^{\prime}(t)=\sqrt{10}$. Therefore

$$
\mathbf{T}=\frac{1}{\sqrt{10}}(-3 \sin 3 t \mathbf{i}+\mathbf{j}-3 \cos 3 t \mathbf{k})
$$

Next, $\mathbf{N}=(d \mathbf{T} / d t) /\|d \mathbf{T} / d t\|$, and

$$
d \mathbf{T} / d t=\frac{1}{\sqrt{10}}(-9 \cos 3 t \mathbf{i}+9 \sin t \mathbf{k})
$$

This has length $9 / \sqrt{10}$, so

$$
\mathbf{N}=-\cos 3 t \mathbf{i}+\sin t \mathbf{k}
$$

Finally, $\mathbf{B}=\mathbf{T} \times \mathbf{N}$:

$$
\mathbf{B}=\operatorname{det}\left(\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{-3 \sin 3 t}{\sqrt{10}} & \frac{1}{\sqrt{10}} & \frac{-3 \cos 3 t}{\sqrt{10}} \\
-\cos 3 t & 0 & \sin t
\end{array}\right)=\frac{1}{\sqrt{10}}(\sin t \mathbf{i}+3 \mathbf{j}+\cos 3 t \mathbf{k}) .
$$

4. (a) (3 points) Find the general solution to the equation

$$
y^{\prime \prime \prime \prime}-y=0 .
$$

Solution: The characteristic equation is $m^{4}-1=0$. This has roots $1,-1, i$, $-i$ (for example, factor it as $\left.\left(m^{2}-1\right)\left(m^{2}+1\right)=0\right)$. These are distinct, so the general solution is

$$
y=c_{1} e^{x}+c_{2} e^{-x}+c_{3} \sin x+c_{4} \cos x
$$

(b) (7 points) Find the general solution to the equation

$$
y^{\prime \prime}-3 y^{\prime}-10 y=14 e^{-2 t}
$$

Solution: First find the solution y_{c} to the associated homogeneous equation. The characteristic equation is $m^{2}-3 m-10=0$, which has roots -2 and 5 (either factor it or use the quadratic formula). So we get

$$
y_{c}=c_{1} e^{-2 t}+c_{2} e^{5 t}
$$

Since the right side of the equation is one of the pieces of y_{c}, we have to try

$$
y_{p}=A t e^{-2 t}
$$

for a particular solution. Plug this in and solve for A : $y_{p}^{\prime}=e^{-2 t}(A-2 A t)$ and $y_{p}^{\prime \prime}=e^{-2 t}(-4 A+4 A t)$, so

$$
y_{p}^{\prime \prime}-3 y_{p}^{\prime}-10 y_{p}=e^{-2 t}(-4 A+4 A t-3 A+6 A t-10 A t)=e^{-2 t}(-7 A)
$$

This is supposed to equal $14 e^{-2 t}$, so $A=-2$. Therefore the general solution is

$$
y=y_{c}+y_{p}=c_{1} e^{-2 t}+c_{2} e^{5 t}-2 t e^{-2 t}
$$

5. (10 points) The initial value problem

$$
(x+1)^{2} y^{\prime \prime}=x+3, \quad y(0)=0, y^{\prime}(0)=0
$$

has a solution of the form $y=\sum_{n=0}^{\infty} a_{n} x^{n}$. Find a_{n} for $n \leq 3$ and find the general recursion relation, making sure to specify the values of n for which it is valid.

Solution: Let $y=\sum a_{n} x^{n}$, so $y^{\prime}=\sum n a_{n} x^{n-1}$ and $y^{\prime \prime}=\sum n(n-1) a_{n} x^{n-2}$. Then

$$
\begin{aligned}
(x+1)^{2} y^{\prime \prime} & =\left(x^{2}+2 x+1\right) y^{\prime \prime}=\left(x^{2}+2 x+1\right) \sum n(n-1) a_{n} x^{n-2} \\
& =\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n}+\sum_{n=0}^{\infty} 2 n(n-1) a_{n} x^{n-1}+\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n-2} .
\end{aligned}
$$

Reindex the second and third sums so they are in terms of x^{n}, and set equal to $x+3$:

$$
\sum_{n=0}^{\infty} n(n-1) a_{n} x^{n}+\sum_{n=0}^{\infty} 2(n+1) n a_{n+1} x^{n}+\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} x^{n}=x+3
$$

or

$$
\sum_{n=0}^{\infty}\left(n(n-1) a_{n}+2(n+1) n a_{n+1}+(n+2)(n+1) a_{n+2}\right) x^{n}=x+3
$$

Equating coefficients of x^{n} on the left and the right, we have

$$
\begin{array}{cc}
a_{2}=3, & (n=0) \\
4 a_{2}+6 a_{3}=1, & (n=1) \\
n(n-1) a_{n}+2(n+1) n a_{n+1}+(n+2)(n+1) a_{n+2}=0 . & (n \geq 2)
\end{array}
$$

The initial conditions give $a_{0}=0=a_{1}$. The equation for $n=0$ tells us that $a_{2}=3 / 2$. The equation for $n=1$ says that $a_{3}=\left(1-4 a_{2}\right) / 6=-5 / 6$. The equation for $n \geq 2$ gives the recursion relation, therefore valid for all $n \geq 2$:

$$
a_{n+2}=-\frac{n(n-1) a_{n}+2(n+1) n a_{n+1}}{(n+2)(n+1)}
$$

6. (a) (8 points) Solve the initial value problem

$$
y^{\prime \prime}+4 y=f(t), \quad y(0)=0, y^{\prime}(0)=0,
$$

where

$$
f(t)= \begin{cases}0 & \text { if } t<0 \\ \cos 2 t & \text { if } 0 \leq t<2 \pi \\ 0 & \text { if } t \geq 2 \pi\end{cases}
$$

(b) (2 points) Sketch the solution.

Solution: We can write $f(t)$ using the Heaviside step function. Note also that with Laplace transform, what happens for $t<0$ is irrelevant, so we don't need to worry about that part of the formula:

$$
f(t)=\cos 2 t-u(t-2 \pi) \cos 2 t=\cos 2 t-u(t-2 \pi) \cos 2(t-2 \pi)
$$

Apply the Laplace transform to the differential equation, writing Y for $\mathcal{L}(y)$:

$$
\left(s^{2}+4\right) Y=\frac{s}{s^{2}+4}-\frac{s e^{-2 \pi s}}{s^{2}+4}
$$

so

$$
Y=\frac{s}{\left(s^{2}+4\right)^{2}}-\frac{s e^{-2 \pi s}}{\left(s^{2}+4\right)^{2}}
$$

Therefore (using the line on the table for $\frac{2 a s}{\left(s^{2}+a^{2}\right)^{2}}$ with $a=2$):

$$
\begin{aligned}
y & =\frac{1}{4} t \sin 2 t-u(t-2 \pi) \frac{1}{4}(t-2 \pi) \sin 2(t-2 \pi) \\
& =\frac{1}{4} t \sin 2 t-u(t-2 \pi) \frac{1}{4}(t-2 \pi) \sin 2 t \\
& =\frac{1}{4} t \sin 2 t-u(t-2 \pi) \frac{1}{4} t \sin 2 t+u(t-2 \pi) \frac{\pi}{2} \sin 2 t .
\end{aligned}
$$

That is,

$$
y= \begin{cases}\frac{1}{4} t \sin 2 t & \text { if } 0 \leq t<2 \pi \\ \frac{\pi}{2} \sin 2 t & \text { if } t \geq 2 \pi\end{cases}
$$

This looks like a sine curve, period π, with steadily increasing amplitude for $0 \leq t<$ 2π - resonance: it's oscillating between the lines $y=-t / 4$ and $y=t / 4-$ and then a sine curve, same period, with amplitude $\pi / 2$ after that:

