1 Preliminaries

If $f(t)$ is defined on the interval $[0, \infty)$, then its Laplace transform is defined to be

$$
F(s)=\mathcal{L}((t))=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

as long as this integral is defined and converges. In particular, if f is of exponential order and is is piecewise continuous, the Laplace transform of $f(t)$ will be defined.

- f is of exponential order if there are constants M and c so that

$$
|f(t)| \leq M e^{c t} .
$$

Since the integral $\int_{0}^{\infty} e^{-s t} M e^{c t} d t$ converges if $s>c$, by a comparison test, the integral defining the Laplace transform of $f(t)$ will converge.

- f is piecewise continuous if over each interval $[0, b], f(t)$ has only finitely many discontinuities, and at each point a in $[0, b]$, both of the limits

$$
\lim _{t \rightarrow a^{-}} f(t) \text { and } \lim _{t \rightarrow a^{+}} f(t)
$$

exist - they need not be equal, but they must exist. (At the endpoints 0 and b, the appropriate one-sided limits must exist.)

2 Step functions

Define $u(t)$ to be the function

$$
u(t)= \begin{cases}0 & \text { if } t<0 \\ 1 & \text { if } t \geq 0\end{cases}
$$

Then $u(t)$ is called the step function: it jumps from 0 to 1 at $t=0$. Note that for any number $a>0$, the graph of the function $u(t-a)$ is the same as the graph of $u(t)$, but translated right by $a: u(t-a)$ jumps from 0 to 1 at $t=a$.

Proposition 1. The Laplace transform of $u(t-a)$ is $e^{-a s} / s$. If $f(t)$ is a function with Laplace transform $F(s)$, then

$$
\mathcal{L}(u(t-a) f(t-a))=e^{-a s} F(s) .
$$

What does the function $u(t-a) f(t-a)$ look like?

3δ-functions

Proposition 2. (a) Let ϵ be a positive number and consider the function $f_{\epsilon}(t)$ defined by

$$
f_{\epsilon}(t)= \begin{cases}1 / \epsilon & \text { if } 0 \leq t \leq \epsilon, \\ 0 & \text { if } t>\epsilon .\end{cases}
$$

Then

$$
\mathcal{L}\left(f_{\epsilon}(t)\right)=\frac{1-e^{s \epsilon}}{s \epsilon}
$$

(b) "Define" the Dirac delta function $\delta(t)$ to be

$$
\delta(t)=\lim _{\epsilon \rightarrow 0} f_{\epsilon}(t) .
$$

Then $\delta(t)=0$ except when $t=0$, and it has the following properties with respect to integration: for any function $f(t)$,

$$
\int_{-\infty}^{\infty} \delta(t) d t=1, \quad \int_{-\infty}^{\infty} \delta(t) f(t) d t=f(0) .
$$

Therefore for any positive number a, we have $\mathcal{L}(\delta(t-a))=e^{-a s}$.
Now, $\delta(t)$ is not a function: the limit defining it doesn't exist when $t=0$, for one thing. If there were a way to define it, then properties of integrals show that if $g(t)$ is any function with $g(t)=0$ whenever $t \neq 0$, then $\int_{a}^{b} g(t)=0$ for any a and b. Instead, $\delta(t)$ is what is called a distribution, and although it isn't a function, it can be treated like one in many ways. Really its defining property is that for any function $f(t)$,

$$
\int_{-\infty}^{\infty} \delta(t) f(t) d t=f(0)
$$

