
MATH 135: COMPLEX NUMBERS

(WINTER, 2010)

The complex numbers C are important in just about every branch of mathematics. These notes1

present some basic facts about them.

1. The Complex Plane

A complex number z is given by a pair of real numbers x and y and is written in the form
z = x + iy, where i satisfies i2 = −1. The complex numbers may be represented as points in the
plane, with the real number 1 represented by the point (1, 0), and the complex number i represented
by the point (0, 1). The x-axis is called the “real axis,” and the y-axis is called the “imaginary
axis.” For example, the complex numbers 1, i, 3 + 4i and 3 − 4i are illustrated in Fig 1a.
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Complex numbers are added in a natural way: If z1 = x1 + iy1 and z2 = x2 + iy2, then

(1) z1 + z2 = (x1 + x2) + i(y1 + y2)

It’s just vector addition. Fig 1b illustrates the addition (4+ i)+ (2+3i) = (6+4i). Multiplication
is given by

z1z2 = (x1x2 − y1y2) + i(x1y2 + x2y1)

Note that the product behaves exactly like the product of any two algebraic expressions, keeping
in mind that i2 = −1. Thus,

(2 + i)(−2 + 4i) = 2(−2) + 8i − 2i + 4i2 = −8 + 6i

Date: January 25, 2010.
1Based on notes written by Bob Phelps, with modifications by Tom Duchamp and John Palmieri.
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We call x the real part of z and y the imaginary part, and we write x = Re z, y = Im z. (Remember:
Im z is a real number.) The term “imaginary” is a historical holdover; it took mathematicians some
time to accept the fact that i (for “imaginary,” naturally) was a perfectly good mathematical object.
Electrical engineers (who make heavy use of complex numbers) reserve the letter i to denote electric
current and they use j for

√
−1.

There is only one way we can have z1 = z2, namely, if x1 = x2 and y1 = y2. An equivalent
statement is that z = 0 if and only if Re z = 0 and Im z = 0. If a is a real number and z = x + iy
is complex, then az = ax + iay (which is exactly what we would get from the multiplication rule
above if z2 were of the form z2 = a + i0). Division is more complicated (although we will show
later that the polar representation of complex numbers makes it easy). To find z1/z2 it suffices to
find 1/z2 and then multiply by z1. The rule for finding the reciprocal of z = x + iy is given by:

(2)
1

x + iy
=

1

x + iy
· x − iy

x − iy
=

x − iy

(x + iy)(x − iy)
=

x − iy

x2 + y2

The expression x − iy appears so often and is so useful that it is given a name: it is called
the complex conjugate of z = x + iy, and a shorthand notation for it is z; that is, if z = x + iy,
then z = x − iy. For example, 3 + 4i = 3 − 4i, as illustrated in Fig 1a . Note that z = z and
z1 + z2 = z1 + z2. Exercise (3b) is to show that z1z2 = z1z2.

Another important quantity associated with a complex number z is its modulus (also known as
its absolute value or magnitude):

|z| = (zz)1/2 =
√

x2 + y2 =
(

(Re z)2 + (Im z)2
)1/2

Note that |z| is a real number. For example, |3 + 4i| =
√

32 + 42 =
√

25 = 5. This leads to the
inequality

(3) Re z ≤ |Re z| =
√

(Re z)2 ≤
√

(Re z)2 + (Im z)2 = |z|

Similarly, Im z ≤ |Im z| ≤ |z|.
Exercises 1.

(1) Show that the product of z = x + iy and the expression (2) above equals 1.
(2) Verify each of the following:

(a) (
√

2 − i) − i(1 −
√

2i) = −2i (b)
1 + 2i

3 − 4i
+

2 − i

5i
= −2

5

(c)
5

(1 − i)(2 − i)(3 − i)
=

1

2
i (d) (1 − i)4 = −4

(3) Prove the following:
(a) z+z = 2Re z, and z is a real number if and only if z = z. (Note also that z−z = 2iIm z.)
(b) z1z2 = z1z2.

(4) Prove that |z1z2| = |z1||z2| (Hint: Use (3b).)
(5) Find all complex numbers z = x + iy such that z2 = 1 + i.

2. Polar Representation of Complex Numbers

Recall that the plane has polar coordinates as well as rectangular coordinates. The relation
between the rectangular coordinates (x, y) and the polar coordinates (r, θ) is
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x = r cos θ and y = r sin θ,

r =
√

x2 + y2 and θ = arctan
y

x
.

(If (x, y) = (0, 0), then r = 0 and θ can be anything.) This means that for the complex number
z = x + iy, we can write

z = r(cos θ + i sin θ).

There is another way to rewrite this expression for z. We know that for any real number x, ex can
be expressed as

ex = 1 + x +
x2

2!
+

x3

3!
+ · · · + xn

n!
+ · · · .

For any complex number z, we define ez by the power series

ez = 1 + z +
z2

2!
+

z3

3!
+ · · · + zn

n!
+ · · · .

In particular,

eiθ = 1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+ · · · + (iθ)n

n!
+ · · ·

= 1 + iθ − θ2

2!
− iθ3

3!
+

θ4

4!
+ · · ·

=

(

1 − θ2

2!
+

θ4

4!
+ · · ·

)

+ i

(

θ − θ3

3!
+

θ5

5!
− · · ·

)

= cos θ + i sin θ.

This is Euler’s Formula:

eiθ = cos θ + i sin θ .

For example,

eiπ/2 = i, eπi = −1 and e2πi = 1.

Given z = x + iy, then z can be written in the form z = reiθ, where

(4) r =
√

x2 + y2 = |z| and θ = tan−1 y

x
.

That is, r is the magnitude of z. Note: In the polar representation of complex number, we always

assume that r is non-negative. The angle θ is sometimes called the argument or phase of z.

For example, the complex number z = 8+6i may also be written as 10eiθ , where θ = arctan(.75) ≈
0.64 radians, as illustrated in Fig 2.
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Fig 2

8 + 6i = 10e0.64i

r = 10

θ ≈ 0.64

If z = −4 + 4i, then r =
√

42 + 42 = 4
√

2 and θ = 3π/4; therefore z = 4
√

2e3πi/4. Any angle
which differs from 3π/4 by an integer multiple of 2π will give us the same complex number. Thus

−4 + 4i can also be written as 4
√

2e11πi/4 or as 4
√

2e−5πi/4. In general, if z = reiθ, then we also
have z = rei(θ+2πk), k = 0,±1,±2, . . . . Moreover, there is ambiguity in equation (4) about the
inverse tangent which can (and must) be resolved by looking at the signs of x and y, respectively,
in order to determine the quadrant in which θ lies. If x = 0, then the formula for θ makes no sense,
but x = 0 simply means that z lies on the imaginary axis and so θ must be π/2 or 3π/2 (depending
on whether y is positive or negative).

The conditions for equality of two complex numbers using polar coordinates are not quite as
simple as they were for rectangular coordinates. If z1 = r1e

iθ1 and z2 = r2e
iθ2 , then z1 = z2 if and

only if r1 = r2 and θ1 = θ2 + 2πk, k = 0,±1,±2, . . . . Despite this, the polar representation is very
useful when it comes to multiplication:

(5) if z1 = r1e
iθ1 and z2 = r2e

iθ2 , then z1z2 = r1r2e
i(θ1+θ2)

That is, to obtain the product of two complex numbers, multiply their moduli and add their angles.
To see why this is true, write z1z2 = reiθ, so that r = |z1z2| = |z1||z2| = r1r2 (by Exercise (4a)). It

remains to show that θ = θ1 + θ2, that is, that eiθ1eiθ2 = ei(θ1+θ2) (this is Exercise (7a) below). For
example, let

z1 = 2 + i =
√

5eiθ1 , θ1 ≈ 0.464, z2 = −2 + 4i =
√

20eiθ2 , θ2 ≈ 2.034.

If z3 = z1z2, then r3 = r1r2 and θ3 = θ1 + θ2; that is,

z3 = −8 + 6i =
√

100eiθ3 , θ3 ≈ 2.498,

as shown in the picture.
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Fig 3
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Applying (5) to z1 = z2 = −4 + 4i = 4
√

2e
3

4
πi (our earlier example), we get

(4 + 4i)2 = (4
√

2e
3

4
πi)2 = 32e

3

2
πi = −32i.

By an easy induction argument, the formula in (5) can be used to prove that for any positive integer
n,

If z = reiθ, then zn = rneinθ.

This makes it easy to solve equations like z4 = −7. Indeed, writing the unknown number z as reiθ,
we have r4ei4θ = −7 ≡ 7eπi, hence r4 = 7 (so r = 71/4, since r must be a non-negative real number)
and 4θ = π + 2kπ, k = 0,±1,±2, . . . . It follows that θ = π/4 + 2kπ/4, k = 0,±1,±2, . . . . There

are only four distinct complex numbers of the form e(π/4+kπ/2)i, namely eπi/4, e3πi/4, e5πi/4 and
e7πi/4. The first of the following figures illustrates z = −7 and its four fourth roots z1 = 71/4eπi/4,
71/4e3πi/4, 71/4e5πi/4 and 71/4e7πi/4, all of which lie on the circle of radius 71/4 about the origin.

Fig 4

−7

71/4eπi/471/4e3πi/4

71/4e5πi/4 71/4e7πi/4

From the fact that (eiθ)n = einθ we obtain De Moivre’s formula:

(cosθ + i sin θ)n = cos nθ + i sin nθ

By expanding on the left and equating real and imaginary parts, you obtain trigonometric identities
which can be used to express cos nθ and sin nθ as a sum of terms of the form (cos θ)j(sin θ)k. For
example, taking n = 2 and looking at the real part produces cos 2θ = cos2 θ− sin2 θ. For n = 3 one
gets cos 3θ = cos3 θ − cos θ sin2 θ − 2 sin2 θ cos2 θ.

Let’s also note the following formulas: if z = reiθ, then

z = re−iθ, Re z = r cos θ, Im z = r sin θ.
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Combined with the formulas from Exercise (3a), we get

cos θ =
1

2

(

eiθ + e−iθ
)

sin θ =
1

2i

(

eiθ − e−iθ
)

= − i

2

(

eiθ − e−iθ
)

Exercises 2.

(6) Let z1 = 3i and z2 = 2 − 2i
(a) Plot the points z1 + z2, z1 − z2 and z2.
(b) Compute |z1 + z2| and |z1 − z2|.
(c) Express z1 and z2 in polar form.

(7) Prove the following:

(a) eiθ1eiθ2 = ei(θ1+θ2).
(b) Use (a) to show that (eiθ)−1 = e−iθ, that is, e−iθeiθ = 1.

(8) Let z1 = 6eiπ/3 and z2 = 2e−iπ/6. Plot z1, z2, z1z2 and z1/z2.
(9) Find all complex numbers z which satisfy z3 = −1.

(10) Find all complex numbers z such that z2 =
√

2eiπ/4.

3. Complex-valued Functions

Now suppose that w = w(t) is a complex-valued function of the real variable t. That is,

w(t) = u(t) + iv(t)

where u(t) and v(t) are real-valued functions. A complex-valued function defines a curve in the
complex plane.

The derivative of w(t) with respect to t is defined to be the function

w′(t) = u′(t) + iv′(t)

(This is just like the definition of the derivative of a vector-valued function – just differentiate the
components.) The derivative can be viewed as the tangent vector to the complex curve.

It is easily checked (just expand the left and right hand sides of each identity) that the following
formulas hold for complex-valued functions z = z(t) and w = w(t):

C ′ = 0 where C = constant

(z + w)′ = z′ + w′

(zw)′ = z′w + zw′

(Cz)′ = Cz′ where C = constant

(zn)′ = nzn−1z′

One function is of particular interest to us: the complex exponential function. It is defined as
follows:

e(ρ+iω)t = eρteiωt = eρt cos(ωt) + ieρt sin(ωt) .

The corresponding curve in the complex plane is a spiral curve: the quantity ω is the angular
velocity of the spiral (ω > 0 corresponds to a counterclockwise spiral, ω < 0 to a clockwise one).
The quantity ρ measures the rate at which the spiral expands outward (ρ > 0) or inward (ρ < 0).
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Computing the derivatives of the real and imaginary parts and collecting terms yields the formula
(

e(ρ+iω)t
)′

= (ρ + iω)e(ρ+iω)t. In other words, even if r is a complex number, the formula

d

dt
ert = rert

holds!

4. The function x(t) = eρt(C1 cos(ωt) + C2 sin(ωt))

We want to write the function

x(t) = C1e
ρt cos(ωt) + C2e

ρt sin(ωt)

in the form
x(t) = Aeρt cos(ωt − φ),

because then we know what the graph of x(t) looks like.

First notice that

Aeρt cos(ωt − φ) = (A cos(φ) cos(ωt) + A sin(φ) sin(ωt)) eρt,

so let
A cos(φ) = C1 and A sin(φ) = C2.

Then we get

A =
√

C2
1 + C2

2 and tan(φ) =
C2

C1
.

Example 1. Consider the function

x(t) = (5 cos(2t) + 4 sin(2t))e−t/5 .

The point (C1, C2) = (5, 4) is in the first quadrant so 0 < φ < π/2. So

A =
√

52 + 42 =
√

41 and φ = tan−1(4/5) .

Hence,

(5 cos(2t) + 4 sin(2t))e−t/5 =
√

41 e−t/5 cos
(

2t − tan−1(4/5)
)

.

Here is a sketch of this curve, showing it oscillating between
√

41e−t/5 and −
√

41e−t/5:
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Note: There is an alternate description of x(t) that makes direct used of the polar form of complex

numbers. Since 5 cos(2t)e−t/5 is the real part of 5e(−1/5+2i)t and since 4 sin(2t)e−t/5 is the real part

of −4ie(−1/5+2i)t, let C = 5 − 4i and ρ + iω = −1/5 + 2i. Then

x(t) = Re
(

(5 − 4i)e(−1/5+2i)t
)

Of course the earlier expression,
√

41 e−t/5 cos
(

2t − tan−1(4/5)
)

, is easier to graph.

Exercises 3.

(11) Sketch the graph of the curve

z(t) = (2 + 2i)e(
1

2
+π i)t

for 0 ≤ t ≤ 3. Sketch the graph of x = x(t) = Re(z(t)).

(12) Consider the function

x(t) = 3e−2t cos(4t) − 5e−2t sin(4t) .

Write it in each of the forms

x(t) = Aeρ t cos(ω t − φ)

and
x(t) = Re

(

Cert
)

where A, ω and φ are real numbers and C and r are complex numbers.


