Problem 24, section 1.62

Let $b_{n}=\left(1+\frac{1}{n}\right)^{n}$ and let $a_{p}=\sum_{k=0}^{p} \frac{1}{k!}$. From Example 6 in the book, we know that the sequence $\left\{b_{n}\right\}$ is increasing and bounded above and that its limit is e; therefore $b_{n}<e$ for all n. Also from Example 6 (in particular, about a third of the way down on page 64), we know that $b_{n}<a_{n}$ for all n.

Therefore, we can follow the book's hint and try to conclude that $\lim b_{n} \leq \lim a_{n}-$ I don't think this is obvious, but it can be justified using the definition of limit. ${ }^{1}$ More importantly, though, we don't actually need this for the rest of the problem: all we need is that $b_{n}<a_{n}$ for all n.

Equation (1.62-3) says that

$$
b_{n}=1+\frac{1}{1!}+\frac{1-\frac{1}{n}}{2!}+\cdots+\frac{\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{n-1}{n}\right)}{n!} .
$$

This is a sum with $n+1$ terms (terms with denominators 0 !, 1 !, 2 !, \ldots, n !). We could write it as

$$
b_{n}=1+\sum_{k=1}^{n} \frac{\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{k-1}{n}\right)}{k!}
$$

For any p with $1<p<n$, if we take the first $p+1$ terms, then the sum is smaller than b_{n}, and that sum is

$$
1+\frac{1}{1!}+\frac{1-\frac{1}{n}}{2!}+\cdots+\frac{\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{p-1}{n}\right)}{p!}=1+\sum_{k=1}^{p} \frac{\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{k-1}{n}\right)}{k!}
$$

Denote this sum by $c_{p, n}$. Fix p and let $n \rightarrow \infty$ here: the denominator of each fraction goes to 1 , so the limit 2 is

$$
\lim _{n \rightarrow \infty} c_{p, n}=1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{p!}=a_{p}
$$

[^0]and since the limit of a quotient is the quotient of the limits,
$$
\lim _{n \rightarrow \infty} \frac{\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{k-1}{n}\right)}{k!}=\frac{1}{k!} .
$$

Finally, since the limit of a sum is the sum of the limits, we have

$$
\lim _{n \rightarrow \infty}\left(1+\sum_{k=1}^{p} \frac{\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{k-1}{n}\right)}{k!}\right)=1+\sum_{k=1}^{p} \frac{1}{k!}=a_{p} .
$$

Since $c_{p, n}<b_{n}$ for all p and n, and since $b_{n}<e$ for all n, we have that $c_{p, n}<e$ for all p and n. Therefore the analogue of Theorem XI for sequences says that $\lim c_{p, n} \leq e$, which means that $a_{p} \leq e$. Therefore we have (replacing p with n):

$$
b_{n}<a_{n} \leq e \quad \text { for all } n
$$

Now apply the squeeze principle: since $\lim b_{n}=e$, we conclude that $a=e$, as desired.
Alternatively, once we know that $a_{p} \leq e$ for all p, then we apply the analogue of Theorem XI for sequences again to conclude that $a \leq e$. If we have also established that $a \geq e$, then these together imply that $a=e$.

[^0]: ${ }^{1}$ There are two possibilities: either $a<e$ or $a \geq e$. We want to rule out the first of these, so let's use contradiction: assume that $a<e$. Let $\varepsilon=(e-a) / 2$, so that $e=a+2 \varepsilon$. Since $\lim b_{n}=e$, there is an N so that $\left|e-b_{n}\right|<\varepsilon$ for all $n \geq N$. Since $b_{n}<e$ for each n, we can rewrite this as $e-b_{n}<\varepsilon$, or $e-\varepsilon<b_{n}$. Therefore $a+\varepsilon<b_{n}<a_{n}$. This means that $\left|a_{n}-a\right|>\varepsilon$. Since a_{n} is farther than ε from a for all $n \geq N$, the $\operatorname{limit} \lim a_{n}$ cannot equal a. This is a contradiction; therefore $a \geq e$.
 ${ }^{2}$ We can break this step down: for each positive integer i, the expression $1-i / n$ goes to 1 as $n \rightarrow \infty$. Since the limit of a product is the product of the limits, then for each k,

 $$
 \lim _{n \rightarrow \infty}\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{k-1}{n}\right)=1,
 $$

