Ordered fields (Taylor and Mann, §2.1–2.2)

Definition 1. A *field* is a set *F* with operations "addition" and "multiplication" satisfying the following:

- If a and b are in F, then so are a + b and ab.
- Addition and multiplication are each associative and commutative, and together they are distributive: a(b+c) = ab + ac for all $a, b, c \in F$.
- F contains elements called 0 and 1 satisfying:

$$a+0=a$$
 and $a\cdot 1=a$

for all $a \in F$.

- For all $a \in F$, there exists an element $b \in F$ so that a + b = 0.
- For all $a \in F$ with $a \neq 0$, there exists an element $b \in F$ so that ab = 1.

Example 2. The set of rational numbers \mathbf{Q} , the set of real numbers \mathbf{R} , and the set of complex numbers \mathbf{C} each form fields. The integers \mathbf{Z} and the non-negative integers \mathbf{N} do not.

Definition 3. A field *F* is *ordered* if it has an ordering < so that:

• For all $a, b \in F$, exactly one of these holds:

$$a < b$$
, $a = b$, $a > b$.

- For all $a, b, c \in F$, if a < b, then a + c < b + c.
- For all $a, b \in F$, if a > 0 and b > 0, then ab > 0.

For example, Q and R are ordered fields, while C is not.

Definition 4. Suppose that *F* is an ordered field and *S* is a subset of *F*. An *upper bound* for *S* is any element *M* of *F* so that $M \ge x$ for all $x \in S$. A *least upper bound* for *S* is any element *L* which is an upper bound for *S* and which also has the property that every a < L is not an upper bound for *S*: *L* is the smallest upper bound for *S*.

An ordered field *F* has the *least upper bound property* if any nonempty subset $S \subseteq F$ with an upper bound has a least upper bound.

For example, **Q** does not have the least upper bound property.

Theorem 5. There is an ordered field \mathbf{R} , the field of real numbers, which has the least upper bound property and contains \mathbf{Q} as a subfield.

We will not prove this theorem. Instead, we will essentially use it as our definition of the field of real numbers.