Ordered fields (Taylor and Mann, \S 2.1-2.2)

Definition 1. A field is a set F with operations "addition" and "multiplication" satisfying the following:

- If a and b are in F, then so are $a+b$ and $a b$.
- Addition and multiplication are each associative and commutative, and together they are distributive: $a(b+c)=a b+a c$ for all $a, b, c \in F$.
- F contains elements called 0 and 1 satisfying:

$$
a+0=a \quad \text { and } \quad a \cdot 1=a
$$

for all $a \in F$.

- For all $a \in F$, there exists an element $b \in F$ so that $a+b=0$.
- For all $a \in F$ with $a \neq 0$, there exists an element $b \in F$ so that $a b=1$.

Example 2. The set of rational numbers \mathbf{Q}, the set of real numbers \mathbf{R}, and the set of complex numbers \mathbf{C} each form fields. The integers \mathbf{Z} and the non-negative integers \mathbf{N} do not.

Definition 3. A field F is ordered if it has an ordering $<$ so that:

- For all $a, b \in F$, exactly one of these holds:

$$
a<b, \quad a=b, \quad a>b .
$$

- For all $a, b, c \in F$, if $a<b$, then $a+c<b+c$.
- For all $a, b \in F$, if $a>0$ and $b>0$, then $a b>0$.

For example, \mathbf{Q} and \mathbf{R} are ordered fields, while \mathbf{C} is not.
Definition 4. Suppose that F is an ordered field and S is a subset of F. An upper bound for S is any element M of F so that $M \geq x$ for all $x \in S$. A least upper bound for S is any element L which is an upper bound for S and which also has the property that every $a<L$ is not an upper bound for $S: L$ is the smallest upper bound for S.

An ordered field F has the least upper bound property if any nonempty subset $S \subseteq F$ with an upper bound has a least upper bound.

For example, \mathbf{Q} does not have the least upper bound property.
Theorem 5. There is an ordered field \mathbf{R}, the field of real numbers, which has the least upper bound property and contains \mathbf{Q} as a subfield.

We will not prove this theorem. Instead, we will essentially use it as our definition of the field of real numbers.

