Ordered fields (Taylor and Mann, §2.1–2.2)

Definition 1. A field is a set F with operations “addition” and “multiplication” satisfying the following:

- If a and b are in F, then so are $a + b$ and ab.
- Addition and multiplication are each associative and commutative, and together they are distributive: $a(b + c) = ab + ac$ for all $a,b,c \in F$.
- F contains elements called 0 and 1 satisfying:

 \[
 a + 0 = a \quad \text{and} \quad a \cdot 1 = a
 \]

 for all $a \in F$.
- For all $a \in F$, there exists an element $b \in F$ so that $a + b = 0$.
- For all $a \in F$ with $a \neq 0$, there exists an element $b \in F$ so that $ab = 1$.

Example 2. The set of rational numbers \mathbb{Q}, the set of real numbers \mathbb{R}, and the set of complex numbers \mathbb{C} each form fields. The integers \mathbb{Z} and the non-negative integers \mathbb{N} do not.

Definition 3. A field F is ordered if it has an ordering $<$ so that:

- For all $a, b \in F$, exactly one of these holds:

 \[
 a < b, \quad a = b, \quad a > b.
 \]

- For all $a, b, c \in F$, if $a < b$, then $a + c < b + c$.
- For all $a, b \in F$, if $a > 0$ and $b > 0$, then $ab > 0$.

For example, \mathbb{Q} and \mathbb{R} are ordered fields, while \mathbb{C} is not.

Definition 4. Suppose that F is an ordered field and S is a subset of F. An upper bound for S is any element M of F so that $M \geq x$ for all $x \in S$. A least upper bound for S is any element L which is an upper bound for S and which also has the property that every $a < L$ is not an upper bound for S: L is the smallest upper bound for S.

An ordered field F has the least upper bound property if any nonempty subset $S \subseteq F$ with an upper bound has a least upper bound.

For example, \mathbb{Q} does not have the least upper bound property.

Theorem 5. There is an ordered field \mathbb{R}, the field of real numbers, which has the least upper bound property and contains \mathbb{Q} as a subfield.

We will not prove this theorem. Instead, we will essentially use it as our definition of the field of real numbers.