Mathematics 327 Midterm Exam Name:
 \qquad

May 8, 2009
Instructions: This is a closed book exam, no notes or calculators allowed. Please turn off all cell phones, pagers, etc.

1. (10 points) Suppose that $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are sequences of real numbers with $\lim _{n \rightarrow \infty} a_{n}=A$ and $\lim _{n \rightarrow \infty} b_{n}=B$. Just using the definition of convergence, prove that

$$
\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=A+B .
$$

(Don't just cite a theorem - prove this straight from the definitions.)

Solution: Fix $\varepsilon>0$. Since $\lim _{n \rightarrow \infty} a_{n}=A$, there is an integer N so that for all $n \geq N$, we have $\left|A-a_{n}\right|<\varepsilon / 2$. Since $\lim _{n \rightarrow \infty} b_{n}=B$, there is an integer N^{\prime} so that for all $n \geq N^{\prime}$, we have $\left|B-b_{n}\right|<\varepsilon / 2$. Let $N^{\prime \prime}=\underset{m}{n \rightarrow \infty}=\max \left(N, N^{\prime}\right)$. Then for all $n \geq N^{\prime \prime}$, we have

$$
\begin{aligned}
\left|(A+B)-\left(a_{n}+b_{n}\right)\right| & =\left|\left(A-a_{n}\right)+\left(B-b_{n}\right)\right| \\
& \leq\left|A-a_{n}\right|+\left|B-b_{n}\right| \quad \text { (triangle inequality) } \\
& <\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

Therefore

$$
\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=A+B .
$$

2. (a) (4 points) Prove that $2^{n}>n$ for every positive integer n.
(b) (6 points) The Archimedean property of the real numbers says

For any positive real numbers c and d, there is a positive integer n so that $n c>d$.
Use part (a) and the Archimedean property to prove that if a and b are real numbers with $a<b$, then there are integers m and n with $n>0$ so that

$$
a<\frac{m}{2^{n}}<b .
$$

Solution: (a) We prove this by induction: if $n=1$, the inequality in question is $2^{1}>1$, which is true. Assume that $2^{n}>n$ for some $n \geq 1$. Then $2^{n+1}=2 \cdot 2^{n}>2 n$ by the inductive hypothesis. Furthermore, $2 n=n+n \geq n+1$ (since $n \geq 1$). Combining the inequalities, we see that $2^{n+1}>n+1$. This finishes the inductive step, and hence the proof.
(b) Since $a<b$, the number $b-a$ is positive. Apply the Archimedean property to the numbers $c=b-a$ and $d=1$: there is a positive integer n so that $n(b-a)>1$. By the previous part (which applies since n is a positive integer), we also have $2^{n}>n$, so $2^{n}(b-a)>n(b-a)>1$. Let m be the smallest integer so that $m>2^{n} a$. Then $m-1 \leq 2^{n} a$, so

$$
2^{n} a<m \leq 2^{n} a+1<2^{n} a+2^{n}(b-a)=2^{n} b,
$$

and so

$$
a<\frac{m}{2^{n}}<b .
$$

Alternatively, once we know that $2^{n}(b-a)>1$, we rewrite this as $2^{n} b-2^{n} a>1$: the numbers $2^{n} b$ and $2^{n} a$ differ by more than 1 . Therefore there is an integer m in between them: there is an integer m with $2^{n} b>m>2^{n} a$. Divide by 2^{n} to get the result.
3. Let S be the set of all numbers of the form $(-1)^{n}-(1 / n), n=1,2,3, \ldots$ Answer the following, giving brief justifications for your answers.
(a) (5 points) Find the least upper bound and greatest lower bound of S.

Solution: First, the points of S are $-2,1 / 2,-4 / 3,3 / 4,-6 / 5,5 / 6, \ldots$ The greatest lower bound is -2 : this is a lower bound, and since it is in S, it must be the greatest lower bound (any larger number will be larger than -2 , and so won't be a lower bound). The least upper bound is 1 : the negative terms are certainly less than 1 , and the positive terms are of the form $1-1 / n$ with n even; these are also less than 1 . Since the positive terms increase and approach 1,1 is the least upper bound.
(b) (5 points) Find all of the accumulation points of S.

Solution: There are two accumulation points: 1 and -1 . Since the even terms approach 1 and the odd terms approach -1 , they are both accumulation points. To see that they are the only two, note that for any other point x on the real line, it is easy to find a neighborhood of x which does not contain infinitely many points of S, and therefore x cannot be an accumulation point of S.
(c) (5 points) Is S open?

Solution: No: the number -2 is in S, but no neighborhood of -2 is contained in S. (This same argument holds for any point of S, in fact.)
(d) (5 points) Is S closed?

Solution: No. There are at least two good reasons for this: the number 1 is an accumulation point of S but is not in S, so S does not contain all of its accumulation points, and so is not closed (by a theorem in the book). Alternatively, the complement S^{c} of S contains 1, but every neighborhood of 1 contains points of S, and hence no neighborhood of 1 is completely contained in S^{c}. Since S^{c} is not open, S is not closed.

