## Axioms and properties of the real numbers

The basic axioms of addition and multiplication: Given two real numbers a and b, they have a sum a+b and a product ab which are also real numbers. These satisfy the following properties, for all real numbers a, b, and c:

- (Well-defined) If a = b, then a + c = b + c and ac = bc.
- (Associativity) (a + b) + c = a + (b + c) and (ab)c = a(bc).
- (Commutativity) a + b = b + a and ab = ba.
- (Distributivity) a(b+c) = ab + ac.
- (Zero) There is a number 0 which satisfies a + 0 = 0.
- (One) There is a number 1 which satisfies  $a \times 1 = a$ .
- (Negatives) The equation a + x = 0 has the unique solution x = -a.
- (Reciprocals) If  $a \neq 0$ , the equation ax = 1 has the unique solution  $x = 1/a = a^{-1}$ .

Some consequences (for any real numbers a, b, c):

- (Cancellation) If a + c = b + c, then a = b.
- (Cancellation) If  $c \neq 0$  and ac = bc, then a = b.
- $a \times 0 = 0 = 0 \times a$ .
- (-a)b = -(ab) = a(-b), (-a)(-b) = ab.

The basic axioms of inequalities: There is an ordering < on real numbers, satisfying the following, for all real numbers a, b, and c:

- (Transitivity) If a < b and b < c, then a < c.
- (Trichotomy) For any a and b, exactly one of the following is true: a < b,  $a = b, \ a > b$ .
- a < b if and only if a + c < b + c.
- If  $a \ge 0$  and  $b \ge 0$ , then  $ab \ge 0$ .

Some consequences (for any real numbers a, b, c):

- a > 0 if and only if -a < 0.
- For all  $a, a^2 \ge 0$ . If  $a \ne 0$ , then  $a^2 > 0$ .
- In particular, 1 > 0.
- If c > 0, then  $a < b \Leftrightarrow ac < bc$ .
- If c < 0, then  $a < b \Leftrightarrow ac > bc$ .
- If a > 0 and b > 0, then ab > 0.