Mathematics 134 Quiz 7 Name: \qquad
November 19, 2009
Instructions: This is a closed book quiz, no notes or calculators allowed. Please turn off all cell phones, pagers, etc.

1. Compute $\int_{e}^{3} \frac{d x}{x(\ln x)^{2}}$.

Solution: Let $u=\ln x$; then $d u=d x / x$, so the integral becomes

$$
\int \frac{d u}{u^{2}}=\frac{-1}{u}=\left.\frac{-1}{\ln x}\right|_{e} ^{3}=-\frac{1}{\ln 3}+\frac{1}{\ln e}=1-\frac{1}{\ln 3} .
$$

2. What is the maximum value of the function $\sqrt[x]{x}$? (Assume that x is positive.)

Solution: We have

$$
\sqrt[x]{x}=x^{1 / x}=e^{\ln \left(x^{1 / x}\right)}=e^{\frac{1}{x} \ln x}
$$

Take the derivative: you get

$$
\left(\frac{1}{x} \ln x\right)^{\prime} e^{\frac{1}{x} \ln x}=\left(-\frac{1}{x^{2}} \ln x+\frac{1}{x^{2}}\right) e^{\frac{1}{x} \ln x}=\frac{1}{x^{2}}(1-\ln x) e^{\frac{1}{x} \ln x}
$$

The first and third factors here are always positive, so the sign of the derivative is controlled by $1-\ln x$. This quantity is positive when $\ln x<1$, which is to say, when $x<e$, it's zero when $x=e$, and it's negative when $x>e$. Therefore the function has a single critical point, $x=e$, and this point gives a maximum by the first derivative test. The maximum value is therefore $\sqrt[e]{e}$.

