Mathematics 134 Quiz 5

Name: \qquad
November 5, 2009
Instructions: This is a closed book quiz, no notes or calculators allowed. Please turn off all cell phones, pagers, etc.

1. Use upper and lower sums to show that

$$
\frac{2}{3}<\int_{1}^{3} \frac{d x}{x}<2
$$

Solution: Partition the interval $[1,3]$ into a single piece. Since the function $y=$ $1 / x$ is decreasing on this interval, the maximum value occurs when $x=1$ and the minimum when $x=3$: the maximum is 1 and the minimum is $1 / 3$. The width of the interval is 2 , so the lower sum is $2 / 3$ and the upper sum is 2 . The integral lies between these numbers:

$$
\frac{2}{3}<\int_{1}^{3} \frac{d x}{x}<2
$$

2. Let $F(x)=\int_{0}^{x}(t-1)\left(t^{2}-4\right) d t$. Find the critical points of $F(x)$ and determine the intervals on which it is increasing and on which it is decreasing.

Solution: By the fundamental theorem of calculus, the derivative of $F(x)$ is

$$
F^{\prime}(x)=(x-1)\left(x^{2}-4\right)=(x-1)(x-2)(x+2)
$$

The critical points are therefore $x=1, x=2$ and $x=-2 . F(x)$ is increasing on $(2, \infty)$ and $(-2,1)$. It is decreasing on $(1,2)$ and $(-\infty,-2)$.

