Mathematics 134 Quiz 4

Name: \qquad
October 22, 2009
Instructions: This is a closed book quiz, no notes or calculators allowed. Please turn off all cell phones, pagers, etc.

1. Show that the equation $x^{3}+9 x^{2}+33 x-8=0$ has exactly one real root.

Solution: Let $p(x)=x^{3}+9 x^{2}+33 x-8$. Since $p(x)$ is an odd-degree polynomial, it has at least one real root (by the Intermediate Value Theorem). If it had more than one, say $p(a)=0$ and $p(b)=0$, then by Rolle's theorem, there would be a point c between a and b with $p^{\prime}(c)=0$. In this case, $p^{\prime}(x)=3 x^{2}+18 x+33=3\left(x^{2}+6 x+11\right)$. This has no real roots: $p^{\prime}(c)=0$ never holds. Therefore $p(x)$ itself cannot have more than one real root.
2. Let $f(x)=a x^{3}+b x^{2}+c x+d$ with $a \neq 0$. Under what conditions on a, b, and c will $f(x)$ have exactly one critical point? In this situation, can you tell whether that critical point is a local max, a local min, or neither?

Solution: The critical points are the points where $f^{\prime}(x)=0$ or $f^{\prime}(x)$ does not exist. For this function, the derivative always exists, so we focus on the first case. We see that $f^{\prime}(x)=3 a x^{2}+2 b x+c$, and this is zero (according to the quadratic formula) at points

$$
\frac{-2 b \pm \sqrt{4 b^{2}-12 a c}}{6 a}=\frac{-2 b \pm 2 \sqrt{b^{2}-3 a c}}{6 a}=\frac{-b \pm \sqrt{b^{2}-3 a c}}{6 a} .
$$

So there is exactly one such point if $b^{2}-3 a c=0$.
I claim that it is neither a max nor a min, by the first derivative test: $f^{\prime}(x)$ is a quadratic with a single zero, so we know from its graph that, except for its root, it is always positive (if $3 a>0$) or always negative (if $3 a<0$). Therefore the first derivative does not change signs at the critical point, so the critical point is not a max or a min.

