\qquad
October 15, 2009
Instructions: This is a closed book quiz, no notes or calculators allowed. Please turn off all cell phones, pagers, etc.

1. Define a function $g(x)$ by

$$
g(x)= \begin{cases}x^{2}, & \text { if } x \text { rational } \\ 0, & \text { if } x \text { irrational }\end{cases}
$$

Show that $g(x)$ is differentiable at $x=0$ and compute $g^{\prime}(0)$.

Solution: We examine the limit

$$
\lim _{h \rightarrow 0} \frac{g(0+h)-g(0)}{h}=\lim _{h \rightarrow 0} \frac{g(h)}{h} .
$$

When h is rational, $g(h) / h=h^{2} / h=h$. When h is irrational, $g(h) / h=0$. So as h approaches $0, g(h) / h$ also approaches 0 . (To prove this carefully, we can use the ε 's and δ 's, or we can use the pinch theorem: the function $g(h) / h$ lies between the functions 0 and h, and so as $h \rightarrow 0, g(h) / h \rightarrow 0$.) Therefore the limit above exists and equals zero, so $g(x)$ is differentiable at $x=0$ with derivative $g^{\prime}(0)=0$.
2. Find the equations for all lines which pass through the point $(0,2)$ and are tangent to the curve $y=x^{3}$.

Solution: The equation for the line tangent to the curve $y=x^{3}$ through the point $\left(a, a^{3}\right)$ is given by the equation

$$
y-a^{3}=\left(3 a^{2}\right)(x-a) \quad \text { (because } 3 a^{2} \text { is the derivative at that point) }
$$

or

$$
y=3 a^{2} x-2 a^{3} .
$$

If this passes through the point $(x, y)=(0,2)$, then (plugging in $x=0$ and $y=2$) we have $2=-2 a^{3}$, so $a^{3}=-1$, so $a=-1$. Thus there is only one such line, the tangent line at the point $(-1,-1)$, with equation

$$
y=3 x+2 \text {. }
$$

