Mathematics 134 Quiz 2

Name: <u>Answers</u>

October 8, 2009

Instructions: This is a closed book quiz, no notes or calculators allowed. Please turn off all cell phones, pagers, etc.

1. Let f be continuous at c. Prove that if f(c) > 0, then there is a $\delta > 0$ so that f(x) > 0 for all $x \in (c - \delta, c + \delta)$.

Solution: By the definitions of limit and continuity, for any $\varepsilon > 0$, there is a $\delta > 0$ so that if $|x-c| < \delta$, then $|f(x) - f(c)| < \varepsilon$. Choose $\varepsilon = f(c)/2$: this is positive since f(c) is. Find a corresponding δ ; then x is in $(c-\delta, c+\delta)$ if and only if $|x-c| < \delta$, and if this holds, then |f(x) - f(c)| < f(c)/2, which means that f(c)/2 < f(x) < 3f(c)/2. In particular, f(x) is positive for all of these values of x.

2. Let a and b be nonzero constants, and compute $\lim_{x\to 0} \frac{\sin ax}{bx}$, justifying your answer using the various theorems on limits.

Solution: We compute:

$$\lim_{x \to 0} \frac{\sin ax}{bx} = \lim_{x \to 0} \frac{a}{b} \frac{\sin ax}{ax}$$

We pull the constant out of the limit:

$$= \frac{a}{b} \lim_{x \to 0} \frac{\sin ax}{ax}$$

We make a change of variables y = ax:

$$= \frac{a}{b} \lim_{y \to 0} \frac{\sin y}{y}$$

and we evaluate the limit:

$$=\frac{a}{b}\cdot 1=\frac{a}{b}$$