\qquad
October 8, 2009
Instructions: This is a closed book quiz, no notes or calculators allowed. Please turn off all cell phones, pagers, etc.

1. Let f be continuous at c. Prove that if $f(c)>0$, then there is a $\delta>0$ so that $f(x)>0$ for all $x \in(c-\delta, c+\delta)$.

Solution: By the definitions of limit and continuity, for any $\varepsilon>0$, there is a $\delta>0$ so that if $|x-c|<\delta$, then $|f(x)-f(c)|<\varepsilon$. Choose $\varepsilon=f(c) / 2$: this is positive since $f(c)$ is. Find a corresponding δ; then x is in $(c-\delta, c+\delta)$ if and only if $|x-c|<\delta$, and if this holds, then $|f(x)-f(c)|<f(c) / 2$, which means that $f(c) / 2<f(x)<3 f(c) / 2$. In particular, $f(x)$ is positive for all of these values of x.
2. Let a and b be nonzero constants, and compute $\lim _{x \rightarrow 0} \frac{\sin a x}{b x}$, justifying your answer using the various theorems on limits.

Solution: We compute:

$$
\lim _{x \rightarrow 0} \frac{\sin a x}{b x}=\lim _{x \rightarrow 0} \frac{a \sin a x}{b x}
$$

We pull the constant out of the limit:

$$
=\frac{a}{b} \lim _{x \rightarrow 0} \frac{\sin a x}{a x}
$$

We make a change of variables $y=a x$:

$$
=\frac{a}{b} \lim _{y \rightarrow 0} \frac{\sin y}{y}
$$

and we evaluate the limit:

$$
=\frac{a}{b} \cdot 1=\frac{a}{b} .
$$

