Math 134: Homework 5

Due October 29

1. Suppose that $f(x)$ is concave up on an interval I. Show that for any $a, b \in I$ with $a<b$,

$$
f(x) \leq \frac{f(b)-f(a)}{b-a}(x-a)+f(a)
$$

for all $x \in[a, b]$. (That is, $f(x)$ lies below the chord from $(a, f(a))$ to $(b, f(b))$.)
2. Use the result (not your proof, just the result) from part 1 to show that if $f(x)$ is concave down, then for any $a, b \in I$ with $a<b$,

$$
f(x) \geq \frac{f(b)-f(a)}{b-a}(x-a)+f(a)
$$

for all $x \in[a, b]$.
(Hint: if $f(x)$ is concave down, can you find a related function which is concave up?)
3. Bonus: Prove the converse: suppose that for all $a, b \in I$ with $a<b$,

$$
f(x) \leq \frac{f(b)-f(a)}{b-a}(x-a)+f(a)
$$

for all $x \in[a, b]$. Prove that $f(x)$ is concave up on I.
Do you need to assume that $f(x)$ is differentiable in I, or can you deduce it? Same for continuity?

