8.3.1 Let $u=f(x, y)$ and $v=g(x, y)$. Then we have

$$
u^{3}+x v-y=0, \quad v^{3}+y u-x=0
$$

and we want to solve for u and v near the point $\left(x_{0}, y_{0}, u_{0}, v_{0}\right)=(0,1,1,-1)$. We can do this if the Jacobian is nonzero. The Jacobian is

$$
\operatorname{det}\left[\begin{array}{cc}
3 u^{2} & x \\
y & 3 v^{2}
\end{array}\right]=9 u^{2} v^{2}-x y
$$

At the point in question, this equals 9. Since it is nonzero, we can solve for u and v in terms of x and y. That is, we can find functions f and g as specified. The implicit theorem guarantees that they will be continuous in a neighborhood of $(0,1)$.
8.3.2 (a) The condition is that the Jacobian at the point is nonzero. The Jacobian, here, is

$$
\operatorname{det}\left[\begin{array}{ccc}
2 u & 2 v & 2 w \\
2 u & 2 v & 0 \\
2 u & 0 & 2 w
\end{array}\right]=-8 u v w .
$$

This is nonzero whenever u, v, and w are nonzero; therefore we can solve for u, v, and w in neighborhoods of all points $\left(x_{0}, y_{0}, z_{0}, u_{0}, v_{0}, w_{0}\right)$, as long as $u_{0} \neq 0, v_{0} \neq 0$, and $w_{0} \neq 0$.
(b) Solving for u^{2}, v^{2}, and w^{2} yields

$$
\begin{aligned}
u^{2} & =-x^{2}+y^{2}+z^{2} \\
v^{2} & =x^{2}-z^{2} \\
w^{2} & =x^{2}-y^{2}
\end{aligned}
$$

Suppose, for example, that we are working in a neighborhood of a point with $v_{0}=0$. If $v_{0}=0$, then $x_{0}^{2}-z_{0}^{2}=0$, so $x_{0}= \pm z_{0}$. At nearby points, x^{2} will be close to z^{2}; in particular, at some nearby points, we will have $x^{2}-z^{2}<0$, and at some nearby points we will have $x^{2}-z^{2}>0$. If $x^{2}-z^{2}<0$, then there is no solution: v^{2} cannot be negative. This is bad. If $x^{2}-z^{2}>0$, then there are two nearby solutions: $v= \pm \sqrt{x^{2}-z^{2}}$. Having two solutions is also bad. (To solve for u, v, and w, we need to know that for each (x, y, z), there is a unique point (u, v, w), and here we either have no such point - if $x^{2}-z^{2}<0-$ or more than one such point - if $x^{2}-z^{2}>0$.)

Similar comments apply if $u_{0}=0$ or if $w_{0}=0$.
8.3.5 Let $F(x, y, z)=x^{2}+y^{2}+z^{2}-r^{2}$, and let $G(x, y, z)=x+y+z-c$. According to the implicit function theorem, we need to know that the Jacobian

$$
J=\operatorname{det}\left[\begin{array}{ll}
\frac{\partial F}{\partial y} & \frac{\partial F}{\partial z} \\
\frac{\partial G}{\partial y} & \frac{\partial G}{\partial z}
\end{array}\right]=\operatorname{det}\left[\begin{array}{cc}
2 y & 2 z \\
1 & 1
\end{array}\right]=2 y-2 z
$$

is nonzero at the point $\left(x_{0}, y_{0}, z_{0}\right)$. Thus if we require that $y_{0} \neq z_{0}$, then we will be able to solve for y and z in terms of x.
extra problem 1. Let $f(x, y)=y-\sin x$. We want to solve $f(x, y)=0$ for x; thus we need to know that $\partial f / \partial x \neq 0$, which is the same as $-\cos x=0$. Thus in neighborhoods of any point except for those of the form $\left(\frac{\pi}{2}+n \pi, \sin \left(\frac{\pi}{2}+n \pi\right)\right.$, where n is an integer, we can solve for x in terms of y.
(You can also write these points as $\left(\frac{\pi}{2}+2 n \pi, 1\right)$ and $\left(\frac{3 \pi}{2}+2 n \pi,-1\right)$, where n is an integer.)
2. Let $g(x, y)=y-\tan x$. We need to know that $\partial g / \partial x \neq 0$, which is to say, that $-\sec ^{2} x \neq 0$. Note that the domain of the tangent function is all real numbers except for those where $\cos x=0$, and so for all points in the domain, $-\sec ^{2} x$ is nonzero, and so we can solve for x in terms of y. So the answer is "everywhere", if you are careful enough to interpret that to mean "everywhere in the domain of the tangent function"; alternatively, the answer is "all points of the form $(x, \tan x)$ where x is not equal to $\frac{\pi}{2}+n \pi$ for n an integer".

